版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年甘肃省嘉峪关市一中高三上数学期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知四棱锥的底面为矩形,底面,点在线段上,以为直径的圆过点.若,则的面积的最小值为()A.9 B.7 C. D.2.已知定义在上的奇函数和偶函数满足(且),若,则函数的单调递增区间为()A. B. C. D.3.向量,,且,则()A. B. C. D.4.由曲线y=x2与曲线y2=x所围成的平面图形的面积为()A.1 B. C. D.5.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为()A. B. C. D.6.已知复数满足,则()A. B.2 C.4 D.37.已知.给出下列判断:①若,且,则;②存在使得的图象向右平移个单位长度后得到的图象关于轴对称;③若在上恰有7个零点,则的取值范围为;④若在上单调递增,则的取值范围为.其中,判断正确的个数为()A.1 B.2 C.3 D.48.设i为数单位,为z的共轭复数,若,则()A. B. C. D.9.各项都是正数的等比数列的公比,且成等差数列,则的值为()A. B.C. D.或10.已知函数满足,当时,,则()A.或 B.或C.或 D.或11.设复数满足为虚数单位),则()A. B. C. D.12.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边、直角边,已知以直角边为直径的半圆的面积之比为,记,则()A. B. C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则_________.14.已知向量,且,则___________.15.已知,在方向上的投影为,则与的夹角为_________.16.小李参加有关“学习强国”的答题活动,要从4道题中随机抽取2道作答,小李会其中的三道题,则抽到的2道题小李都会的概率为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,已知圆,以原点为极点,x轴正半轴为极轴建立极坐标系,已知直线平分圆M的周长.(1)求圆M的半径和圆M的极坐标方程;(2)过原点作两条互相垂直的直线,其中与圆M交于O,A两点,与圆M交于O,B两点,求面积的最大值.18.(12分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.19.(12分)已知非零实数满足.(1)求证:;(2)是否存在实数,使得恒成立?若存在,求出实数的取值范围;若不存在,请说明理由20.(12分)据《人民网》报道,美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.据统计,中国新增绿化面积的来自于植树造林,下表是中国十个地区在去年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷地区造林总面积造林方式人工造林飞播造林新封山育林退化林修复人工更新内蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重庆2263331006006240063333陕西297642184108336026386516067甘肃325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629宁夏91531589602293882981335北京1906410012400039991053(1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;(2)在这十个地区中,任选一个地区,求该地区新封山育林面积占造林总面积的比值超过的概率;(3)在这十个地区中,从退化林修复面积超过一万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望.21.(12分)已知函数,其中.(Ⅰ)若,求函数的单调区间;(Ⅱ)设.若在上恒成立,求实数的最大值.22.(10分)已知,均为给定的大于1的自然数,设集合,.(Ⅰ)当,时,用列举法表示集合;(Ⅱ)当时,,且集合满足下列条件:①对任意,;②.证明:(ⅰ)若,则(集合为集合在集合中的补集);(ⅱ)为一个定值(不必求出此定值);(Ⅲ)设,,,其中,,若,则.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利用均值不等式即可容易求得.【详解】设,,则.因为平面,平面,所以.又,,所以平面,则.易知,.在中,,即,化简得.在中,,.所以.因为,当且仅当,时等号成立,所以.故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.2、D【解析】
根据函数的奇偶性用方程法求出的解析式,进而求出,再根据复合函数的单调性,即可求出结论.【详解】依题意有,①,②①②得,又因为,所以,在上单调递增,所以函数的单调递增区间为.故选:D.【点睛】本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.3、D【解析】
根据向量平行的坐标运算以及诱导公式,即可得出答案.【详解】故选:D【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.4、B【解析】
首先求得两曲线的交点坐标,据此可确定积分区间,然后利用定积分的几何意义求解面积值即可.【详解】联立方程:可得:,,结合定积分的几何意义可知曲线y=x2与曲线y2=x所围成的平面图形的面积为:.本题选择B选项.【点睛】本题主要考查定积分的概念与计算,属于中等题.5、D【解析】
设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为,则其母线长为,因为圆柱的表面积公式为,所以,解得,因为圆柱的体积公式为,所以,由题知,圆柱内切球的体积是圆柱体积的,所以所求圆柱内切球的体积为.故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.6、A【解析】
由复数除法求出,再由模的定义计算出模.【详解】.故选:A.【点睛】本题考查复数的除法法则,考查复数模的运算,属于基础题.7、B【解析】
对函数化简可得,进而结合三角函数的最值、周期性、单调性、零点、对称性及平移变换,对四个命题逐个分析,可选出答案.【详解】因为,所以周期.对于①,因为,所以,即,故①错误;对于②,函数的图象向右平移个单位长度后得到的函数为,其图象关于轴对称,则,解得,故对任意整数,,所以②错误;对于③,令,可得,则,因为,所以在上第1个零点,且,所以第7个零点,若存在第8个零点,则,所以,即,解得,故③正确;对于④,因为,且,所以,解得,又,所以,故④正确.故选:B.【点睛】本题考查三角函数的恒等变换,考查三角函数的平移变换、最值、周期性、单调性、零点、对称性,考查学生的计算求解能力与推理能力,属于中档题.8、A【解析】
由复数的除法求出,然后计算.【详解】,∴.故选:A.【点睛】本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.9、C【解析】分析:解决该题的关键是求得等比数列的公比,利用题中所给的条件,建立项之间的关系,从而得到公比所满足的等量关系式,解方程即可得结果.详解:根据题意有,即,因为数列各项都是正数,所以,而,故选C.点睛:该题应用题的条件可以求得等比数列的公比,而待求量就是,代入即可得结果.10、C【解析】
简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【详解】由,可知函数关于对称当时,,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【点睛】本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,,考验分析能力,属中档题.11、B【解析】
易得,分子分母同乘以分母的共轭复数即可.【详解】由已知,,所以.故选:B.【点睛】本题考查复数的乘法、除法运算,考查学生的基本计算能力,是一道容易题.12、D【解析】
根据以直角边为直径的半圆的面积之比求得,即的值,由此求得和的值,进而求得所求表达式的值.【详解】由于直角边为直径的半圆的面积之比为,所以,即,所以,所以.故选:D【点睛】本小题主要考查同角三角函数的基本关系式,考查二倍角公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
因为,所以.因为,所以,又,所以,所以..14、【解析】
由向量平行的坐标表示得出,求解即可得出答案.【详解】因为,所以,解得.故答案为:【点睛】本题主要考查了由向量共线或平行求参数,属于基础题.15、【解析】
由向量投影的定义可求得两向量夹角的余弦值,从而得角的大小.【详解】在方向上的投影为,即夹角为.故答案为:.【点睛】本题考查求向量的夹角,掌握向量投影的定义是解题关键.16、【解析】
从四道题中随机抽取两道共6种情况,抽到的两道全都会的情况有3种,即可得到概率.【详解】由题:从从4道题中随机抽取2道作答,共有种,小李会其中的三道题,则抽到的2道题小李都会的情况共有种,所以其概率为.故答案为:【点睛】此题考查根据古典概型求概率,关键在于根据题意准确求出基本事件的总数和某一事件包含的基本事件个数.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】
先求出,再求圆的半径和极坐标方程;(2)设求出,,再求出得解.【详解】(1)将化成直角坐标方程,得则,故,则圆,即,所以圆M的半径为.将圆M的方程化成极坐标方程,得.即圆M的极坐标方程为.(2)设,则,用代替.可得,【点睛】本题主要考查直角坐标和极坐标的互化,考查极径的计算,意在考查学生对这些知识的理解掌握水平.18、(1)单调递增区间为,单调递减区间为;(2)【解析】
(1),令,解不等式即可;(2),令得,即,且的最小值为,令,结合即可解决.【详解】(1),当时,,递增,当时,,递减.故的单调递增区间为,单调递减区间为.(2),,,设的根为,即有可得,,当时,,递减,当时,,递增.,所以,①当;②当时,设,递增,,所以.综上,.【点睛】本题考查了利用导数研究函数单调性以及函数恒成立问题,这里要强调一点,处理恒成立问题时,通常是构造函数,将问题转化为函数的极值或最值来处理.19、(1)见解析(2)存在,【解析】
(1)利用作差法即可证出.(2)将不等式通分化简可得,讨论或,分离参数,利用基本不等式即可求解.【详解】又即即①当时,即恒成立(当且仅当时取等号),故②当时恒成立(当且仅当时取等号),故综上,【点睛】本题考查了作差法证明不等式、基本不等式求最值、考查了分类讨论的思想,属于基础题.20、(1)人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省;(2);(3)分布列见详解,数学期望为【解析】
(1)通过数据的观察以及计算人工造林面积与造林总面积比值,可得结果.(2)通过数据的观察以及计算新封山育林面积与造林总面积比值,得出比值超过的地区个数,然后可得结果.(3)计算退化林修复面积超过一万公顷的地区中选两个地区总数,退化林修复面积超过六万公顷的地区的个数为,列出所有取值并计算相应概率,然后可得结果.【详解】(1)人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省.(2)记事件A:在这十个地区中,任选一个地区,该地区新封山育林面积占总面积的比值超过根据数据可知:青海地区人工造林面积占总面积比超过,则(3)退化林修复面积超过一万公顷有6个地区:内蒙、河北、河南、重庆、陕西、新疆,其中退化林修复面积超过六万公顷有3个地区:内蒙、河北、重庆,所以X的取值为0,1,2所以,,随机变量X的分布列如下:【点睛】本题考查数据的处理以及离散型随机变量的分布列与数学期望,审清题意,细心计算,属基础题.21、(Ⅰ)单调递减区间为,单调递增区间为;(Ⅱ).【解析】
(Ⅰ)求出函数的定义域以及导数,利用导数可求出该函数的单调递增区间和单调递减区间;(Ⅱ)由题意可知在上恒成立,分和两种情况讨论,在时,构造函数,利用导数证明出在上恒成立;在时,经过分析得出,然后构造函数,利用导数证明出在上恒成立,由此得出,进而可得出实数的最大值.【详解】(Ⅰ)函数的定义域为.当时,.令
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 航空部件维修合同模板
- 甜品店劳动合同
- 梯阻系统安装合同
- 《食管癌的治疗》课件
- 《大学英语UNI》课件
- 2025年丹东a2货运从业资格证模拟考试
- 军训个人心得体会汇编15篇
- 2025年石家庄货运从业资格证模拟考试题及答案解析
- 智能家居项目延期还款协议
- 风电设备运输司机聘用合同模板
- 部编版六年级语文上第八单元复习课件
- 企业年终颁奖晚会公司年会PPT
- 最新VTE指南解读(静脉血栓栓塞症的临床护理指南解读)
- 湘教版劳动教育初中第八课生炒柠檬鸭教案
- (格式已排好)国家开放大学电大《计算机应用基础(专)》终结性考试大作业答案任务一
- 已安排论坛-树脂基复合材料工艺仿真软件pam rtm教程
- 课程与教学论(王本陆)PPT通用课件
- 丽声北极星分级绘本第一级上 I Can See课件
- BUCK电路的Saber仿真设计说明
- word公章模板
- 古代文论知识点总结
评论
0/150
提交评论