版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年河南省洛阳市偃师高中高三数学第一学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的定义域为,则函数的定义域为()A. B.C. D.2.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为()A. B. C. D.3.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么()A.国防大学,研究生 B.国防大学,博士C.军事科学院,学士 D.国防科技大学,研究生4.网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月5.在关于的不等式中,“”是“恒成立”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知集合,,则集合子集的个数为()A. B. C. D.7.已知方程表示的曲线为的图象,对于函数有如下结论:①在上单调递减;②函数至少存在一个零点;③的最大值为;④若函数和图象关于原点对称,则由方程所确定;则正确命题序号为()A.①③ B.②③ C.①④ D.②④8.已知菱形的边长为2,,则()A.4 B.6 C. D.9.已知平面向量,,,则实数x的值等于()A.6 B.1 C. D.10.设集合,,若集合中有且仅有2个元素,则实数的取值范围为A. B.C. D.11.已知为虚数单位,若复数,,则A. B.C. D.12.数列满足,且,,则()A. B.9 C. D.7二、填空题:本题共4小题,每小题5分,共20分。13.已知函数则______.14.数列满足递推公式,且,则___________.15.已知圆,直线与圆交于两点,,若,则弦的长度的最大值为_______.16.函数的极大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.当时,求不等式的解集;,,求a的取值范围.18.(12分)已知函数(),且只有一个零点.(1)求实数a的值;(2)若,且,证明:.19.(12分)某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度.在每一轮游戏中,主持人给出A,B,C,D四种食物,要求小孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果.设小孩对四种食物排除的序号依次为xAxBxCxD,家长猜测的序号依次为yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四个数字的一种排列.定义随机变量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X来衡量家长对小孩饮食习惯的了解程度.(1)若参与游戏的家长对小孩的饮食习惯完全不了解.(ⅰ)求他们在一轮游戏中,对四种食物排出的序号完全不同的概率;(ⅱ)求X的分布列(简要说明方法,不用写出详细计算过程);(2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足X<4,请判断这位家长对小孩饮食习惯是否了解,说明理由.20.(12分)在中,,.已知分别是的中点.将沿折起,使到的位置且二面角的大小是60°,连接,如图:(1)证明:平面平面(2)求平面与平面所成二面角的大小.21.(12分)在一次电视节目的答题游戏中,题型为选择题,只有“A”和“B”两种结果,其中某选手选择正确的概率为p,选择错误的概率为q,若选择正确则加1分,选择错误则减1分,现记“该选手答完n道题后总得分为”.(1)当时,记,求的分布列及数学期望;(2)当,时,求且的概率.22.(10分)已知函数(,为自然对数的底数),.(1)若有两个零点,求实数的取值范围;(2)当时,对任意的恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】试题分析:由题意,得,解得,故选A.考点:函数的定义域.2、B【解析】
根据程序框图列举出程序的每一步,即可得出输出结果.【详解】输入,不成立,是偶数成立,则,;不成立,是偶数不成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;成立,跳出循环,输出i的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.3、C【解析】
根据①③可判断丙的院校;由②和⑤可判断丙的学位.【详解】由题意①甲不是军事科学院的,③乙不是军事科学院的;则丙来自军事科学院;由②来自军事科学院的不是博士,则丙不是博士;由⑤国防科技大学的是研究生,可知丙不是研究生,故丙为学士.综上可知,丙来自军事科学院,学位是学士.故选:C.【点睛】本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题.4、C【解析】
根据图形,计算出,然后解不等式即可.【详解】解:,点在直线上,令因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C【点睛】考查如何确定线性回归直线中的系数以及线性回归方程的实际应用,基础题.5、C【解析】
讨论当时,是否恒成立;讨论当恒成立时,是否成立,即可选出正确答案.【详解】解:当时,,由开口向上,则恒成立;当恒成立时,若,则不恒成立,不符合题意,若时,要使得恒成立,则,即.所以“”是“恒成立”的充要条件.故选:C.【点睛】本题考查了命题的关系,考查了不等式恒成立问题.对于探究两个命题的关系时,一般分成两步,若,则推出是的充分条件;若,则推出是的必要条件.6、B【解析】
首先求出,再根据含有个元素的集合有个子集,计算可得.【详解】解:,,,子集的个数为.故选:.【点睛】考查列举法、描述法的定义,以及交集的运算,集合子集个数的计算公式,属于基础题.7、C【解析】
分四类情况进行讨论,然后画出相对应的图象,由图象可以判断所给命题的真假性.【详解】(1)当时,,此时不存在图象;(2)当时,,此时为实轴为轴的双曲线一部分;(3)当时,,此时为实轴为轴的双曲线一部分;(4)当时,,此时为圆心在原点,半径为1的圆的一部分;画出的图象,由图象可得:对于①,在上单调递减,所以①正确;对于②,函数与的图象没有交点,即没有零点,所以②错误;对于③,由函数图象的对称性可知③错误;对于④,函数和图象关于原点对称,则中用代替,用代替,可得,所以④正确.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的图象与性质,函数的零点概念,考查了数形结合的数学思想.8、B【解析】
根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果.【详解】如图所示,菱形形的边长为2,,∴,∴,∴,且,∴,故选B.【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题..9、A【解析】
根据向量平行的坐标表示即可求解.【详解】,,,,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.10、B【解析】
由题意知且,结合数轴即可求得的取值范围.【详解】由题意知,,则,故,又,则,所以,所以本题答案为B.【点睛】本题主要考查了集合的关系及运算,以及借助数轴解决有关问题,其中确定中的元素是解题的关键,属于基础题.11、B【解析】
由可得,所以,故选B.12、A【解析】
先由题意可得数列为等差数列,再根据,,可求出公差,即可求出.【详解】数列满足,则数列为等差数列,,,,,,,故选:.【点睛】本题主要考查了等差数列的性质和通项公式的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先由解析式求得(2),再求(2).【详解】(2),,所以(2),故答案为:【点睛】本题考查对数、指数的运算性质,分段函数求值关键是“对号入座”,属于容易题.14、2020【解析】
可对左右两端同乘以得,依次写出,,,,累加可得,再由得,代入即可求解【详解】左右两端同乘以有,从而,,,,将以上式子累加得.由得.令,有.故答案为:2020【点睛】本题考查数列递推式和累加法的应用,属于基础题15、【解析】
设为的中点,根据弦长公式,只需最小,在中,根据余弦定理将表示出来,由,得到,结合弦长公式得到,求出点的轨迹方程,即可求解.【详解】设为的中点,在中,,①在中,,②①②得,即,,.,得.所以,.故答案为:.【点睛】本题考查直线与圆的位置关系、相交弦长的最值,解题的关键求出点的轨迹方程,考查计算求解能力,属于中档题.16、【解析】
对函数求导,根据函数单调性,即可容易求得函数的极大值.【详解】依题意,得.所以当时,;当时,.所以当时,函数有极大值.故答案为:.【点睛】本题考查利用导数研究函数的性质,考查运算求解能力以及化归转化思想,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)当时,,①当时,,令,即,解得,②当时,,显然成立,所以,③当时,,令,即,解得,综上所述,不等式的解集为.(2)因为,因为,有成立,所以只需,解得,所以a的取值范围为.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.18、(1)(2)证明见解析【解析】
(1)求导可得在上,在上,所以函数在时,取最小值,由函数只有一个零点,观察可知则有,即可求得结果.(2)由(1)可知为最小值,则构造函数(),求导借助基本不等式可判断为减函数,即可得,即则有,由已知可得,由,可知,因为时,为增函数,即可得证得结论.【详解】(1)().因为,所以,令得,,且,,在上;在上;所以函数在时,取最小值,当最小值为0时,函数只有一个零点,易得,所以,解得.(2)由(1)得,函数,设(),则,设(),则,,所以为减函数,所以,即,所以,即,又,所以,又当时,为增函数,所以,即.【点睛】本题考查借助导数研究函数的单调性及最值,考查学生分析问题的能力,及逻辑推理能力,难度困难.19、(1)(ⅰ)(ⅱ)分布表见解析;(2)理由见解析【解析】
(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,家长的排序有种等可能结果,利用列举法求出其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,由此能求出他们在一轮游戏中,对四种食物排出的序号完全不同的概率.
(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,由此能求出X的分布列.
(2)假设家长对小孩的饮食习惯完全不了解,在一轮游戏中,P(X<4)=P(X=0)+P(X=2)=,三轮游戏结果都满足“X<4”的概率为,这个结果发生的可能性很小,从而这位家长对小孩饮食习惯比较了解.【详解】(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,先考虑小孩的排序为xA,xB,xC,xD为1234的情况,家长的排序有=24种等可能结果,其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,分别为:2143,2341,2413,3142,3412,3421,4123,4312,4321,∴家长的排序与对应位置的数字完全不同的概率P=.基小孩对四种食物的排序是其他情况,只需将角标A,B,C,D按照小孩的顺序调整即可,假设小孩的排序xA,xB,xC,xD为1423的情况,四种食物按1234的排列为ACDB,再研究yAyByCyD的情况即可,其实这样处理后与第一种情况的计算结果是一致的,∴他们在一轮游戏中,对四种食物排出的序号完全不同的概率为.(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,列出所有情况,分别计算每种情况下的x的值,X的分布列如下表:X02468101214161820P(2)这位家长对小孩的饮食习惯比较了解.理由如下:假设家长对小孩的饮食习惯完全不了解,由(1)可知,在一轮游戏中,P(X<4)=P(X=0)+P(X=2)=,三轮游戏结果都满足“X<4”的概率为()3=,这个结果发生的可能性很小,∴这位家长对小孩饮食习惯比较了解.【点睛】本题考查概率的求法,考查古典概型、排列组合、列举法等基础知识,考查运算求解能力,是中档题.20、(1)证明见解析(2)45°【解析】
(1)设的中点为,连接,设的中点为,连接,,从而即为二面角的平面角,,推导出,从而平面,则,即,进而平面,推导四边形为平行四边形,从而,平面,由此即可得证.(2)以B为原点,在平面中过B作BE的垂线为x轴,BE为y轴,BA为z轴建立空间直角坐标系,利用向量法求出平面与平面所成二面角的大小.【详解】(1)∵是的中点,∴.设的中点为,连接.设的中点为,连接,.易证:,,∴即为二面角的平面角.∴,而为的中点.易知,∴为等边三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分别为的中点.∴四边形为平行四边形.∴,平面,又平面.∴平面平面.(2)如图,建立空间直角坐标系,设.则,,,,显然平面的法向量,设平面的法向量为,,,∴,∴.,由图形观察可知,平面与平面所成的二面角的平面角为锐角.∴平面与平面所成的二面角大小为45°.【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全国教育大会解读
- 中班安全教育教案40篇冬季
- 煤矿应急救援应知应会100题课件
- 高考调研高考数学一轮复习第十章第课时
- 2024至2030年中国感光涂胶布生产线数据监测研究报告
- 2024至2030年中国布饰发圈行业投资前景及策略咨询研究报告
- 2024年四川省泸州市中考语文试题含解析
- 2024年中国紧急转动式蘑菇钮市场调查研究报告
- 2024年中国短滴状塑料片自动锁市场调查研究报告
- 2024年中国冻兔肉排市场调查研究报告
- 小学英语课堂教学策略与方法探讨
- 5科学大玉米真好吃课件
- 新苏教版2021-2022四年级科学上册《8力与运动》教案
- DB44 T 552-2008 林业生态 术语
- 套装门安装工程施工方案(完整版)
- IBHRE国际心律失常考官委员会资料: ibhre 复习资料
- 洋葱杂交制种高产栽培技术
- 坚定信心 努力拼搏——在公司大检修动员会上的讲话
- 油墨喷码机购销合同
- 水泵生产作业指导书
- 《高血压的防治》PPT课件.ppt
评论
0/150
提交评论