版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省六安市七校联考数学八上期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列标志中,不是轴对称图形的是()A. B. C. D.2.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC3.9的算术平方根是()A.3 B.9 C.±3 D.±94.化简的结果是()A. B. C. D.5.下列各式中,从左到右的变形是因式分解的是()A. B.C. D.6.入冬以来,我校得流行性感冒症状较重,据悉流感病毒的半径为0.000000126,请把0.000000126用科学记数法表示为()A. B. C. D.7.如图所示的两个三角形全等,则的度数是()A. B. C. D.8.是一个完全平方式,则k等于()A. B.8 C. D.49.生物学家发现了一种病毒,其长度约为,将数据0.00000032用科学记数法表示正确的是()A. B. C. D.10.如图,直线:交轴于,交轴于,轴上一点,为轴上一动点,把线段绕点逆时针旋转得到线段,连接,,则当长度最小时,线段的长为()A. B. C.5 D.二、填空题(每小题3分,共24分)11.如图:在中,,以顶点为圆心,适当长为半径画弧,分别交、于点、,再分别以点、为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,,则的面积为____.12.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是_____.13.若点在第二、四象限角平分线上,则点的坐标为__________.14.若一个多边形的内角和是900º,则这个多边形是边形.15.根据某商场2018年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为_____万元.16.某住宅小区有一块草坪如图所示,已知AB=6米,BC=8米,CD=24米,DA=26米,且AB⊥BC,则这块草坪的面积是________平方米.17.关于x的方程有两个不相等的实数根,则m的取值范围是__________.18.在平面直角坐标系中,把向上平移4个单位,得到点,则点的坐标为__________.三、解答题(共66分)19.(10分)在计算的值时,小亮的解题过程如下:解:原式①②③④(1)老师认为小亮的解法有错,请你指出:小亮是从第_________步开始出错的;(2)请你给出正确的解题过程.20.(6分)欣欣服装厂加工A、B两种款式的运动服共100件,加工A种运动服的成本为每件80元,加工B种运动服的成本为每件100元,加工两种运动服的成本共用去9200元.(1)A、B两种运动服各加工多少件?(2)A种运动服的标价为200元,B种运动服的标价为220元,若两种运动服均打八折出售,则该服装厂售完这100件运动服共盈利多少元?21.(6分)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)试说明△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.22.(8分)如图,中,,平分交于点.求证:BC=AC+CD.23.(8分)如图,已知中,,,点为的中点,如果点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动.(1)若点与点的运动速度相等,经过1秒后,与是否全等?请说明理由;(2)若点与点的运动速度不相等,当点的运动速度为多少时,能使与全等?24.(8分)(1)(2)25.(10分)口罩是疫情防控的重要物资,某药店销售A、B两种品牌口罩,购买2盒A品牌和3盒B牌的口罩共需480元;购买3盒A品牌和1盒B牌的口罩共需370元.(1)求这两种品牌口罩的单价.(2)学校开学前夕,该药店对学生进行优恵销售这两种口罩,具体办法如下:A品牌口罩按原价的八折销售,B品牌口罩5盒以内(包含5盒)按原价销售,超出5盒的部分按原价的七折销售,设购买x盒A品牌的口罩需要的元,购买x盒B品牌的口罩需要元,分别求出、关于x的函数关系式.(3)当需要购买50盒口罩时,买哪种品牌的口罩更合算?26.(10分)如图,(1)写出顶点C的坐标;(2)作关于y轴对称的;(3)若点与点A关于x轴对称,求a-b的值
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据轴对称图形的性质对各项进行判断即可.【详解】A.是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.是轴对称图形;故答案为:B.【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的性质是解题的关键.2、B【解析】试题分析:在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),则还需添加的添加是OB=OC,故选B.考点:全等三角形的判定.3、A【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.【详解】∵12=9,∴9的算术平方根是1.故选A.【点睛】此题主要考查了算术平方根的定义,易错点正确区别算术平方根与平方根的定义.4、D【分析】首先将分子、分母进行因式分解,然后根据分式的基本性质约分.【详解】解:,故选D.5、D【分析】根据因式分解的意义(把一个多项式化成几个整式的积的形式,这个过程叫因式分解)逐个判断即可.【详解】解:A、是整式的乘法,不是因式分解,故本选项不符合题意;
B、右边不是积的形式,所以不是因式分解,故本选项不符合题意;
C、是整式的乘法,不是因式分解,故本选项不符合题意;
D、是因式分解,故本选项符合题意;
故选:D.【点睛】本题考查了因式分解的定义,能正确理解因式分解的定义是解此题的关键.6、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000126=1.26×10-1.
故选:B.【点睛】此题考查科学记数法表示较小的数,解题关键在于掌握一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、A【分析】根据全等三角形对应角相等解答即可.【详解】解:在△ABC中,∠B=180-58°-72°=50°,∵两个三角形全等,
∴∠1=∠B=50°.
故选A.【点睛】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.8、A【分析】根据完全平方公式:,即可得出结论.【详解】解:∵是完全平方式,∴解得:故选A.【点睛】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.9、B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000032=3.2×10-1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10、B【分析】作EH⊥x轴于H,通过证明△DBO≌△BEH,可得HE=OB,从而确定点点的运动轨迹是直线,根据垂线段最短确定出点E的位置,然后根据勾股定理求解即可.【详解】解:作EH⊥x轴于H,∵∠DBE=90°,∴∠DBC+∠CBE=90°.∵∠BHE=90°,∴∠BEH+∠CBE=90°,∴∠DBC=∠BEH.在△DBO和△BEH中,∵∠DBC=∠BEH,∠BOD=∠BHE,BD=BE,∴△DBO≌△BEH中,∴HE=OB,当y=0时,,∴x=3,∴HE=OB=3,∴点的运动轨迹是直线,B(3,0),∴当⊥m时,CE最短,此时点的坐标为(-1,3),∵B(-1,0),B(3,0),∴BC=4,∴BE′=,∴BD=BE′=4,∴OD=,∴CD=.故选B.【点睛】本题考查一次函数与坐标轴的交点,坐标与图形的变化,旋转变换、全等三角形的判定与性质,垂线段最短以及勾股定理等知识,解题的关键是确定点E的位置.二、填空题(每小题3分,共24分)11、6【解析】作⊥,由角平分线的性质知,再根据三角形的面积公式计算可得.【详解】作于.
由作图知是的平分线,
∵
∴,
∵,
∴,
故答案为:.【点睛】本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.12、14【分析】根据三角形中位线定理得到FG∥EH,FG=EH,根据平行四边形的判定定理和周长解答即可.【详解】∵F,G分别为BC,CD的中点,∴FG=BD=4,FG∥BD,∵E,H分别为AB,DA的中点,∴EH=BD=4,EH∥BD,∴FG∥EH,FG=EH,∴四边形EFGH为平行四边形,∴EF=GH=AC=3,∴四边形EFGH的周长=3+3+4+4=14,故答案为14【点睛】本题考查的是三角形中位线定理,掌握三角形中位线定理和平行四边形的判定定理是解题的关键.13、(4,-4)【分析】根据第二、第四象限坐标轴夹角平分线上的点,横纵坐标互为相反数,由此就可以得到关于m的方程,解出m的值,即可求得P点的坐标.【详解】解:∵点P(5+m,m-3)在第二、四象限的角平分线上,
∴(5+m)+(m-3)=0,
解得:m=-1,
∴P(4,-4).
故答案为:(4,-4).【点睛】本题考查了点的坐标的知识,注意掌握知识点:第二、四象限的夹角角平分线上的点的横纵坐标互为相反数.14、七【分析】根据多边形的内角和公式,列式求解即可.【详解】设这个多边形是边形,根据题意得,,解得.故答案为.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.15、1【分析】用二季度的营业额÷二季度所占的百分比即可得到结论.【详解】由扇形图可以看出二季度所占的百分比为,所以该商场全年的营业额为万元,答:该商场全年的营业额为1万元.故答案为1.【点睛】本题考查扇形统计图,正确的理解扇形统计图中的信息是解题的关键.16、【分析】连接AC,先利用勾股定理求出AC,再根据勾股定理的逆定理判定△ACD是直角三角形,分别计算两个直角三角形的面积,再求和即所求的面积.【详解】解:连接AC,∵在△ABC中,AB⊥BC即∠ABC=90°,AB=6,BC=8,∴,,又∵CD=24,DA=26,∴,∴,∴△ACD是直角三角形,且∠ACD=90°∴∴故答案为:144.【点睛】本题考查了勾股定理、勾股定理的逆定理的应用,同时考查了直角三角形的面积公式.作辅助线构造直角三角形是解题的关键.17、【分析】有两个不相等实数根得到判别式大于0,解不等式即可求解.【详解】解:由题意可知,方程有两个不相等的实数根,解得:,故答案为:.【点睛】本题考查一元二次方程判别式的应用,当△>0时,方程有两个不相等的实根,当△=0时,方程有两个相等实根,当△<0时,方程没有实数根.18、【分析】点在坐标系的平移,遵循纵坐标上加下减,横坐标右加左减,根据这个规律即可求出坐标.【详解】解:由题意得,若将点向上平移,则点的纵坐标增加即:点向上平移4个单位后,点A(-10,1)的坐标变为(-10,5).故答案为:(-10,5).【点睛】本题考查坐标与图形的变化-平移,解题的关键是熟练掌握坐标系基本知识.三、解答题(共66分)19、(1)③;(2)答案见解析.【分析】根据二次根式的运算法则即可求出答案.【详解】解:(1)二次根式加减时不能将根号下的被开方数进行加减,故③错误,故填③;(2)原式=2=6=4【点睛】本题考查了二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.20、(1)A种运动服加工40件,B种运动服加工60件;(2)该服装厂售完这100件运动服共盈利7760元.【分析】(1)设A种运动服加工了x件,B种运动服加工了y件,根据该服装厂加工A、B两种款式的运动服共100件且共用去9200元的成本,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据利润与标价、折扣、售价、进价之间的关系,计算解答【详解】解:(1)设A种运动服加工x件,B种运动服加工y件,根据题意可得:,解得:,答:A种运动服加工40件,B种运动服加工60件;(2)依题意得:40×(200×0.8﹣80)+60×(220×0.8﹣100)=7760(元),答:共盈利7760元.【点睛】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)牢记利润公式,利润=售价-进价,售价=标价×折扣.21、(1)见解析;(2)70°.【分析】(1)由C是线段AB的中点,得到AC=BC,根据角平分线的定义得到∠ACD=∠BCE.则可证三角形全等;
(2)根据平角的定义得到∠ACD=∠DCE=∠BCE=60°,根据全等三角形的性质得到∠E=∠D=50°,根据三角形的内角和即可得到结论.【详解】(1)证明:∵C是线段AB的中点∴AC=BC∵CD平分∠ACE,CE平分∠BCD,∴∠ACD=∠ECD,∠BCE=∠ECD,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).(2)解:∵△ACD≌△BCE,∴∠D=∠E=50°,∵∠ACD+∠DCE+∠BCE=180°,∠ACD=∠DCE=∠BCE,∴∠ACD=∠DCE=∠BCE=60°,∴∠B=180°-∠BCE-∠E=70°.【点睛】本题考查全等三角形的判定和性质、三角形内角和定理等知识,解题的关键是正确寻找全等三角形全等的条件.22、证明见解析.【分析】如图,在线段上截取,连结,由角平分线的性质可得∠ABD=∠EBD=∠ABC,利用SAS可证明△ABD≌△EBD,即可得,,根据等腰三角形的性质可求出∠ACB=∠ABC=36°,根据三角形内角和定理及外角性质可得,即可证明CD=CE,进而可得结论.【详解】如图,在线段上截取,连结,∵平分,∴在和中,∴,∴,.∵,∴,∴,∴∴,∴∴,∴,∴.【点睛】本题考查角平分线的定义、全等三角形的判定与性质、三角形内角和定理、外角性质及等腰三角形的性质,熟练掌握相关性质和判定定理是解题关键.23、(1)全等;(2)不相等,当点的运动速度为时,能使与全等.【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP;
(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【详解】解:(1)全等.理由如下:中,,,由题意可知,,经过1秒后,,,,在和中,,;(2)设点的运动速度为,经过与全等,则可知,,,,根据全等三角形的判定定理可知,有两种情况:①当,时,且,解得,,,∴舍去此情况;②当,时,且,解得,,故若点与点的运动速度不相等,则当点的运动速度为时,能使与全等.【点睛】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动合同法员工离职的规定2024年-
- 转租房屋租赁协议范例
- 房屋建设四邻合作协议
- 房地产开发承包合同
- 房地产项目抵押借款合同
- 房产认购协议书
- 新昌县茶叶种植收购合同汇编
- 2023年高考押题预测卷01浙江卷-生物(原卷版)
- 2023年高考地理第一次模拟考试卷-(天津A卷)(全解全析)
- 2023年高考地理复习精题精练-城镇化(解析版)
- 电动客车驱动桥总成设计
- 四川省阿坝藏族羌族自治州《综合知识》事业单位国考真题
- 2023年人民法院电子音像出版社招聘笔试题库及答案解析
- 大学生心理健康优秀说课-比赛课件
- 收款账户变更的声明
- 九年级道德与法治中考复习资料
- 《化学发展简史》学习心得
- 班组建设与班组长管理技巧课件
- 签派员执照考试题库汇总-8签派和实践应用
- 30屈原《楚辞·橘颂》课件
- 销售人员十大军规课件
评论
0/150
提交评论