版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省长沙市望城县中考数学模拟预测题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中为正方体的平面展开图的是()A. B.C. D.2.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A.5 B.10 C.10 D.153.若一个凸多边形的内角和为720°,则这个多边形的边数为A.4 B.5 C.6 D.74.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)5.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A.80° B.50° C.30° D.20°6.下列计算正确的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b27.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A. B.C. D.8.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b29.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数(x>0)的图象经过顶点B,则k的值为A.12 B.20 C.24 D.3210.若关于x、y的方程组有实数解,则实数k的取值范围是()A.k>4 B.k<4 C.k≤4 D.k≥411.如图,等腰△ABC中,AB=AC=10,BC=6,直线MN垂直平分AB交AC于D,连接BD,则△BCD的周长等于()A.13 B.14 C.15 D.1612.如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=9,则S△EFC等于_____.14.若一元二次方程有两个不相等的实数根,则k的取值范围是.15.关于的方程有增根,则______.16.在中,::1:2:3,于点D,若,则______17.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是______mm.18.三角形两边的长是3和4,第三边的长是方程x2﹣14x+48=0的根,则该三角形的周长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:二次函数满足下列条件:①抛物线y=ax2+bx与直线y=x只有一个交点;②对于任意实数x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.(1)求二次函数y=ax2+bx的解析式;(2)若当-2≤x≤r(r≠0)时,恰有t≤y≤1.5r成立,求t和r的值.20.(6分)计算:+(﹣)﹣1+|1﹣|﹣4sin45°.21.(6分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.22.(8分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,,求末端操作器节点到地面直线的距离.(结果保留根号)23.(8分)2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多元.(1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?24.(10分)已知函数的图象与函数的图象交于点.(1)若,求的值和点P的坐标;(2)当时,结合函数图象,直接写出实数的取值范围.25.(10分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:b和k的值;△OAB的面积.26.(12分)解方程:.27.(12分)“知识改变命运,科技繁荣祖国”.在举办一届全市科技运动会上.下图为某校2017年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:(1)该校参加航模比赛的总人数是人,空模所在扇形的圆心角的度数是;(2)并把条形统计图补充完整;(3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖.今年全市中小学参加航模比赛人数共有2500人,请你估算今年参加航模比赛的获奖人数约是多少人?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】
利用正方体及其表面展开图的特点依次判断解题.【题目详解】由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C.【题目点拨】本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键.2、B【解题分析】作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示,∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G=,∴C四边形EFGH=2E′G=10,故选B.【题目点拨】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键.3、C【解题分析】
设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【题目详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【题目点拨】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.4、D【解题分析】解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵点B坐标为(1,0),∴A点的坐标为(4,).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣﹣2).故选D.点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.5、D【解题分析】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.考点:平行线的性质;三角形的外角的性质.6、D【解题分析】A、原式=a2﹣4,不符合题意;B、原式=a2﹣a﹣2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a2﹣2ab+b2,符合题意,故选D7、A【解题分析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.详解:该几何体的左视图是:故选A.点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.8、B【解题分析】
根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.【题目详解】A选项:4x3•1x1=8x5,故原题计算正确;
B选项:a4和a3不是同类项,不能合并,故原题计算错误;
C选项:(-x1)5=-x10,故原题计算正确;
D选项:(a-b)1=a1-1ab+b1,故原题计算正确;
故选:B.【题目点拨】考查了整式的乘法,关键是掌握整式的乘法各计算法则.9、D【解题分析】
如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数(x>0)的图象上,∴.故选D.10、C【解题分析】
利用根与系数的关系可以构造一个两根分别是x,y的一元二次方程,方程有实数根,用根的判别式≥0来确定k的取值范围.【题目详解】解:∵xy=k,x+y=4,∴根据根与系数的关系可以构造一个关于m的新方程,设x,y为方程的实数根.解不等式得故选:C.【题目点拨】本题考查了一元二次方程的根的判别式的应用和根与系数的关系.解题的关键是了解方程组有实数根的意义.11、D【解题分析】
由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由△CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【题目详解】解:∵MN是线段AB的垂直平分线,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周长=AC+BC=10+6=16,故选D.【题目点拨】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.12、A【解题分析】试题分析:主视图是从正面看到的图形,只有选项A符合要求,故选A.考点:简单几何体的三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解题分析】
由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE=2EB,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.【题目详解】解:∵四边形ABCD是平行四边形,∴BC∥AD、BC=AD,而CE=2EB,∴△AFD∽△CFE,且它们的相似比为3:2,∴S△AFD:S△EFC=()2,而S△AFD=9,∴S△EFC=1.故答案为1.【题目点拨】此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解.14、:k<1.【解题分析】
∵一元二次方程有两个不相等的实数根,∴△==4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为k<1.15、-1【解题分析】根据分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入x=1可求得a=-1.故答案为-1.点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数.16、2.1【解题分析】
先求出△ABC是∠A等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.【题目详解】解:根据题意,设∠A、∠B、∠C为k、2k、3k,则k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵AB=10,∴BC=AB=1,∵CD⊥AB,∴∠BCD=∠A=30°,∴BD=BC=2.1.故答案为2.1.【题目点拨】本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.17、200【解题分析】
先求出OA的长,再由垂径定理求出AC的长,根据勾股定理求出OC的长,进而可得出结论.【题目详解】解:∵⊙O的直径为1000mm,
∴OA=OA=500mm.
∵OD⊥AB,AB=800mm,
∴AC=400mm,
∴OC===300mm,∴CD=OD-OC=500-300=200(mm).
答:水的最大深度为200mm.故答案为:200【题目点拨】本题考查的是垂径定理的应用,根据勾股定理求出OC的长是解答此题的关键.18、13【解题分析】
利用因式分解法求出解已知方程的解确定出第三边,即可求出该三角形的周长.【题目详解】方程x2-14x+48=0,分解因式得:(x-6)(x-8)=0,解得:x=6或x=8,当x=6时,三角形周长为3+4+6=13,当x=8时,3+4<8不能构成三角形,舍去,综上,该三角形的周长为13,故答案为13【题目点拨】此题考查了解一元二次方程-因式分解法,以及三角形三边关系,熟练掌握运算法则是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)y=x2+x;(2)t=-4,r=-1.【解题分析】
(1)由①联立方程组,根据抛物线y=ax2+bx与直线y=x只有一个交点可以求出b的值,由②可得对称轴为x=1,从而得a的值,进而得出结论;(2)进行分类讨论,分别求出t和r的值.【题目详解】(1)y=ax2+bx和y=x联立得:ax2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1,∵对称轴为=1,∴=1,∴a=,∴y=x2+x.(2)因为y=x2+x=(x-1)2+,所以顶点(1,)当-2<r<1,且r≠0时,当x=r时,y最大=r2+r=1.5r,得r=-1,当x=-2时,y最小=-4,所以,这时t=-4,r=-1.当r≥1时,y最大=,所以1.5r=,所以r=,不合题意,舍去,综上可得,t=-4,r=-1.【题目点拨】本题考查二次函数综合题,解题的关键是理解题意,利用二次函数的性质解决问题.20、【解题分析】
根据绝对值的概念、特殊三角函数值、负整数指数幂、二次根式的化简计算即可得出结论.【题目详解】解:+(﹣)﹣1+|1﹣|﹣1sin15°=2﹣3+﹣1﹣1×=2﹣3+﹣1﹣2=﹣1.【题目点拨】此题主要考查了实数的运算,负指数,绝对值,特殊角的三角函数,熟练掌握运算法则是解本题的关键.21、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P点坐标(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解题分析】
(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理表示出DC,DE的长.再建立相等关系式求出m值,进而求出D点坐标;(3)先根据边角边证明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后当以C、D、P为顶点的三角形与△DOC相似时,根据对应边不同进行分类讨论:①当OC与CD是对应边时,有比例式,能求出DP的值,又因为DE=DC,所以过点P作PG⊥y轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;②当OC与DP是对应边时,有比例式,易求出DP,仍过点P作PG⊥y轴于点G,利用比例式求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标.【题目详解】解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴,解得,故抛物线的函数解析式为y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则点C的坐标为(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点E坐标为(1,﹣4),设点D的坐标为(0,m),作EF⊥y轴于点F(如下图),∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴点D的坐标为(0,﹣1);(3)∵点C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①当OC与CD是对应边时,∵△DOC∽△PDC,∴,即=,解得DP=,过点P作PG⊥y轴于点G,则,即,解得DG=1,PG=,当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,所以点P(﹣,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(,﹣2);②当OC与DP是对应边时,∵△DOC∽△CDP,∴,即=,解得DP=3,过点P作PG⊥y轴于点G,则,即,解得DG=9,PG=3,当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,所以,点P的坐标是(﹣3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,﹣10),综上所述,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,满足条件的点P共有4个,其坐标分别为(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.22、()cm.【解题分析】
作BG⊥CD,垂足为G,BH⊥AF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.【题目详解】如图,作BG⊥CD,垂足为G,BH⊥AF,垂足为H,在中,∠BCD=60°,BC=60cm,∴,在中,∠BAF=45°,AB=60cm,∴,∴D到L的距离.【题目点拨】本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.23、(1)2元;(2)第二批花的售价至少为元;【解题分析】
(1)设第一批花每束的进价是x元,则第二批花每束的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m元,根据利润=每束花的利润×数量结合总利润不低于1500元,即可得出关于m的一元一次不等式,解之即可得出结论.【题目详解】(1)设第一批花每束的进价是x元,则第二批花每束的进价是元,根据题意得:,解得:,经检验:是原方程的解,且符合题意.答:第一批花每束的进价是2元.(2)由可知第二批菊花的进价为元.设第二批菊花的售价为m元,根据题意得:,解得:.答:第二批花的售价至少为元.【题目点拨】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24、(1),,或;(2).【解题分析】【分析】(1)将P(m,n)代入y=kx,再结合m=2n即可求得k的值,联立y=与y=kx组成方程组,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 昆明城市学院《广告设计(2)》2021-2022学年第一学期期末试卷
- 九江学院《照明设计》2021-2022学年第一学期期末试卷
- 财经专业的职业生涯规划
- 2025年葫芦岛货运上岗证模拟考试题
- 2025年海北考从业资格证货运试题
- 2025年江门货运b2从业资格证考试卷
- 2025年海口道路货运运输从业资格证模拟考试
- 2025年郑州货运从业资格考试题目
- 2025年常州驾驶员货运从业资格证模拟考试
- 购商用门面合同范例
- 2024年铁总服务中心招聘6人高频难、易错点500题模拟试题附带答案详解
- 福建省泉州市2023-2024学年高一上学期期末质检英语试题(解析版)
- 2024秋期国家开放大学专科《建设法规》一平台在线形考(形成性作业一至五)试题及答案
- 医院内分泌科危急重症应急预案
- 第三单元第1课 标志设计 课件 2024-2025学年人教版(2024)初中美术七年级上册
- 肿瘤物理消融治疗新进展
- 独立站合同模板
- 行政管理学(山东联盟)智慧树知到答案2024年曲阜师范大学
- 安徽省2022年中考语文现代文阅读真题及答案
- 小儿短肠综合征
- 2024年新苏教版科学六年级上册全册背诵专用知识点
评论
0/150
提交评论