河北省秦皇岛市抚宁台营区2024届初中数学毕业考试模拟冲刺卷含解析_第1页
河北省秦皇岛市抚宁台营区2024届初中数学毕业考试模拟冲刺卷含解析_第2页
河北省秦皇岛市抚宁台营区2024届初中数学毕业考试模拟冲刺卷含解析_第3页
河北省秦皇岛市抚宁台营区2024届初中数学毕业考试模拟冲刺卷含解析_第4页
河北省秦皇岛市抚宁台营区2024届初中数学毕业考试模拟冲刺卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省秦皇岛市抚宁台营区2024学年初中数学毕业考试模拟冲刺卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为()A.6 B.9 C.11 D.无法计算2.如图是某个几何体的展开图,该几何体是()A.三棱柱 B.三棱锥 C.圆柱 D.圆锥3.的一个有理化因式是()A. B. C. D.4.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()A. B.5 C.6 D.5.2022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为()A.12×10 B.1.2×10 C.1.2×10 D.0.12×106.如图,在中,,将折叠,使点落在边上的点处,为折痕,若,则的值为()A. B. C. D.7.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()A. B. C. D.8.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A. B. C. D.9.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20° B.30° C.40° D.50°10.据统计,2018年全国春节运输人数约为3000000000人,将3000000000用科学记数法表示为()A.0.3×1010B.3×109C.30×108D.300×107二、填空题(共7小题,每小题3分,满分21分)11.不等式组的最大整数解是__________.12.如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,则BC=_____.13.已知x3=y14.已知整数k<5,若△ABC的边长均满足关于x的方程,则△ABC的周长是.15.分解因式:2a4﹣4a2+2=_____.16.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为.17.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为_______.三、解答题(共7小题,满分69分)18.(10分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A,B两种型号的电风扇的销售单价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.19.(5分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.20.(8分)解方程组:21.(10分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求证:四边形ABCD是菱形;过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.22.(10分)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.求证:△ACB≌△BDA;若∠ABC=36°,求∠CAO度数.23.(12分)反比例函数的图象经过点A(2,3).(1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.24.(14分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】

有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时,S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.【题目详解】把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直线上,且AB为△ACH'的中线,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时,S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以阴影部分面积之和为S△ABC的3倍,又∵AB=2,AC=3,∴图中阴影部分的最大面积为3××2×3=9,故选B.【题目点拨】本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3倍是解题的关键.2、A【解题分析】

侧面为长方形,底面为三角形,故原几何体为三棱柱.【题目详解】解:观察图形可知,这个几何体是三棱柱.故本题选择A.【题目点拨】会观察图形的特征,依据侧面和底面的图形确定该几何体是解题的关键.3、B【解题分析】

找出原式的一个有理化因式即可.【题目详解】的一个有理化因式是,故选B.【题目点拨】此题考查了分母有理化,熟练掌握有理化因式的取法是解本题的关键.4、B【解题分析】

易证△CFE∽△BEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.【题目详解】若点E在BC上时,如图∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,,∴△CFE∽△BEA,由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BE=CE=x﹣,即,∴,当y=时,代入方程式解得:x1=(舍去),x2=,∴BE=CE=1,∴BC=2,AB=,∴矩形ABCD的面积为2×=5;故选B.【题目点拨】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键.5、B【解题分析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】数据12000用科学记数法表示为1.2×104,故选:B.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、B【解题分析】

根据折叠的性质可知AE=DE=3,然后根据勾股定理求CD的长,然后利用正弦公式进行计算即可.【题目详解】解:由折叠性质可知:AE=DE=3∴CE=AC-AE=4-3=1在Rt△CED中,CD=故选:B【题目点拨】本题考查折叠的性质,勾股定理解直角三角形及正弦的求法,掌握公式正确计算是本题的解题关键.7、C【解题分析】

过点B作BE⊥AD于E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.【题目详解】如图,过点B作BE⊥AD于E.∵∠A=60°,设AB边的长为x,∴BE=AB∙sin60°=x.∵平行四边形ABCD的周长为12,∴AB=(12-2x)=6-x,∴y=AD∙BE=(6-x)×x=﹣(0≤x≤6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C符合题意.故选C.【题目点拨】本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键.8、C【解题分析】

列表得,

1

2

0

-1

1

(1,1)

(1,2)

(1,0)

(1,-1)

2

(2,1)

(2,2)

(2,0)

(2,-1)

0

(0,1)

(0,2)

(0,0)

(0,-1)

-1

(-1,1)

(-1,2)

(-1,0)

(-1,-1)

由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为,故选C.考点:用列表法(或树形图法)求概率.9、C【解题分析】

由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【题目详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【题目点拨】本题主要考查平行线的性质,熟悉掌握性质是关键.10、B【解题分析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【题目详解】解:根据科学计数法的定义可得,3000000000=3×109,故选择B.【题目点拨】本题考查了科学计数法的定义,确定n的值是易错点.二、填空题(共7小题,每小题3分,满分21分)11、【解题分析】

先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【题目详解】解:,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整数解为0,1,1,则该不等式组的最大整数解是x=1.故答案为:1.【题目点拨】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12、1【解题分析】

先由DE∥BC,可证得△ADE∽△ABC,进而可根据相似三角形得到的比例线段求得BC的长.【题目详解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案为:1.【题目点拨】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.13、7【解题分析】

由x3=y4可知xy【题目详解】解:∵x3∴xy∴原式=xy【题目点拨】本题考查了分式的化简求值.14、6或12或1.【解题分析】

根据题意得k≥0且(3)2﹣4×8≥0,解得k≥.∵整数k<5,∴k=4.∴方程变形为x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的边长均满足关于x的方程x2﹣6x+8=0,∴△ABC的边长为2、2、2或4、4、4或4、4、2.∴△ABC的周长为6或12或1.考点:一元二次方程根的判别式,因式分解法解一元二次方程,三角形三边关系,分类思想的应用.【题目详解】请在此输入详解!15、1(a+1)1(a﹣1)1.【解题分析】

原式提取公因式,再利用完全平方公式分解即可.【题目详解】解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,故答案为:1(a+1)1(a﹣1)1【题目点拨】本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式.16、1【解题分析】考点:圆锥的计算.分析:求得扇形的弧长,除以1π即为圆锥的底面半径.解:扇形的弧长为:=4π;这个圆锥的底面半径为:4π÷1π=1.点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.17、【解题分析】

分析:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k﹣1),得出方程(1+k)•(k﹣1)=k,解方程即可.详解:如图所示,过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,∴△AOM≌△BAN,∴AM=BN=1,OM=AN=k,∴OD=1+k,BD=OM﹣BN=k﹣1∴B(1+k,k﹣1),∵双曲线y=(x>0)经过点B,∴(1+k)•(k﹣1)=k,整理得:k2﹣k﹣1=0,解得:k=(负值已舍去),故答案为.点睛:本题考查了反比例函数图象上点的坐标特征,坐标与图形的性质,全等三角形的判定与性质,等腰三角形的判定与性质等知识.解决问题的关键是作辅助线构造全等三角形.【题目详解】请在此输入详解!三、解答题(共7小题,满分69分)18、(1)A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2)A种型号的电风扇最多能采购10台;(3)在(2)的条件下超市不能实现利润为1400元的目标.【解题分析】

(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.【题目详解】(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台.依题意,得解得答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台.(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30-a)台.依题意,得200a+170(30-a)≤5400,解得a≤10.答:A种型号的电风扇最多能采购10台.(3)依题意,有(250-200)a+(210-170)(30-a)=1400,解得a=20.∵a≤10,∴在(2)的条件下超市不能实现利润为1400元的目标.【题目点拨】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.19、(1)y=﹣x2﹣x+3;(2)①点D坐标为(﹣,0);②点M(,0).【解题分析】

(1)应用待定系数法问题可解;(2)①通过分类讨论研究△APQ和△CDO全等②由已知求点D坐标,证明DN∥BC,从而得到DN为中线,问题可解.【题目详解】(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得:,∴抛物线解析式为:y=-x2-x+3;(2)①存在点D,使得△APQ和△CDO全等,当D在线段OA上,∠QAP=∠DCO,AP=OC=3时,△APQ和△CDO全等,∴tan∠QAP=tan∠DCO,,∴,∴OD=,∴点D坐标为(-,0).由对称性,当点D坐标为(,0)时,由点B坐标为(4,0),此时点D(,0)在线段OB上满足条件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB,∴BD=BC=5,∴OD=BD-OB=1,则点D坐标为(-1,0)且AD=BD=5,连DN,CM,则DN=DM,∠NDC=∠MDC,∴∠NDC=∠DCB,∴DN∥BC,∴,则点N为AC中点.∴DN时△ABC的中位线,∵DN=DM=BC=,∴OM=DM-OD=∴点M(,0)【题目点拨】本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合.20、【解题分析】

设=a,=b,则原方程组化为,求出方程组的解,再求出原方程组的解即可.【题目详解】设=a,=b,则原方程组化为:,①+②得:4a=4,解得:a=1,把a=1代入①得:1+b=3,解得:b=2,即,解得:,经检验是原方程组的解,所以原方程组的解是.【题目点拨】此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法.解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.21、(1)详见解析;(2)1.【解题分析】

(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE==6,于是得到结论.【题目详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE==6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【题目点拨】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.22、(1)证明见解析(2)18°【解题分析】

(1)根据HL证明Rt△ABC≌Rt△BAD即可;(2)利用全等三角形的性质及直角三角形两锐角互余的性质求解即可.【题目详解】(1)证明:∵∠D=∠C=90°,∴△ABC和△BAD都是Rt△,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL);(2)∵Rt△ABC≌Rt△BAD,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论