版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学姓名:_________座位号:_________(在此卷上答题无效)本试卷共4页,22题.全卷满分150分,考试时间120分钟.考生注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数,则的共轭复数是()A.2 B. C. D.【答案】D【解析】【分析】先利用复数的乘方运算化简,再利用共轭复数的定义求解.【详解】解:,则共轭复数是.故选:D2.集合,集合,,则()A. B.C. D.【答案】D【解析】【分析】先求解出集合,再分别验证四个选项即可.【详解】集合,,或,,更多课件教案视频等优质滋源请家威杏MXSJ663,,所以,故选项A不正确;,故选项B不正确;或,故选项C不正确;,故选项D正确;故选:D.3.函数,则下列函数中为奇函数的是()A. B.C. D.【答案】B【解析】【分析】由函数图象的平移变换结合奇函数定义可解.详解】关于点对称,故将的图像向左平移1个单位长度,再向下平移2个单位长度后,图像关于原点对称,(事实上为奇函数),故选:B.4.已知向量,若,则()A. B.C. D.【答案】D【解析】【分析】根据向量的坐标运算求出,,再根据向量垂直的坐标表示即可求出.【详解】因为,所以,,由可得,,即,整理得:.故选:D.5.2022年11月29日神舟十五号载人飞船发射任务取得圆满成功,开启了我国空间站应用发展的新阶段.在太空站内有甲,乙、丙三名航天员,按照一定顺序依次出仓进行同一试验、每次只派一人、每人最多出仓一次,且时间不超过10分钟.若第一次试验不成功,返仓后派下一人重复进行试验,若试验成功终止试验.已知甲,乙,丙10分钟内试验成功的概率分别为,,,每人试检能否成功相互独立,则试验成功的概率为()A. B. C. D.【答案】D【解析】【分析】法一:利用对立事件的概率求解;法二:设试验任务成功的事件,甲成功的事件,甲不成功乙成功的事件,甲乙都不成功丙成功的事件,由事件,,互斥求解.【详解】解:法一:试验任务不成功的的概率是,所以成功概率是法二:不妨设按照甲乙丙顺序依次出仓进行试验,设试验任务成功的事件,甲成功的事件,甲不成功乙成功的事件,甲乙都不成功丙成立的事件,,,,因为事件,,互斥,所以试验任务成功的概率.故选:D.6.在中,,BC边上的高等于,则()A. B. C. D.【答案】C【解析】【详解】试题分析:设,故选C.考点:解三角形.7.已知数列对任意满足,则()A.3032 B.3035 C.3038 D.3041【答案】C【解析】【分析】由数列的递推关系求解即可.【详解】因为,所以,两式相减得:,令得,所以,所以,当时,.故选:C.8.在中,,,E,F,G分别为三边,,的中点,将,,分别沿,,向上折起,使得A,B,C重合,记为,则三棱锥的外接球表面积的最小值为()A. B. C. D.【答案】B【解析】【分析】设,,由题设.将放在棱长为x,y,z长方体中,可得的关系式,三棱锥的外接球就是长方体的外接球,利用基本不等式结合球的表面积公式求解.【详解】设,,由题设.三棱锥中,,,,将放在棱长为x,y,z的长方体中,如图,则有,三棱锥的外接球就是长方体的外接球,所以,由基本不等式,当且仅当时等号成立,所以外接球表面积.故选:B.【点睛】关键点睛:本题解决的难点是根据题意得到三棱锥的特征,从而放置到相应的长方体中,由此得解.二、选择题:本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分.9.已知数列的前项和为,则下列说法正确的是()A. B.数列是递增数列C.数列的最小项为和 D.满足的最大正整数【答案】ABD【解析】【分析】先根据求出,即可判断选项A、B;再利用二次函数性质可判断选项C;最后根据解不等式即可判断选项D.详解】当时,;当时,;.数列是递增数列,故选项A、B正确;,当或时最小,即数列的最小项为和,故选项C错误,令,得,,即满足的最大正整数,故选项D正确.故选:ABD10.设,,满足,则下列说法正确的是()A.的最大值是 B.的最小值是9C.的最小值是 D.的最小值是1【答案】BC【解析】【分析】根据正实数a,b满足,结合基本不等式和二次函数求最值即可判断.【详解】解:对于A,正实数a,b满足,所以,则,即,当且仅当,即等号成立,所以有最大值,故A错误;对于B,,当且仅当时等号成立,则有最小值9,故B正确;对于C,正实数a,b满足,则,故,所以,则当时,有最小值,故C正确;对于D,结合C可知,,则当时,有最小值,故D错误.故选:BC.11.已知圆台的轴截面如图所示,其上、下底面圆的半径分别为1和3,母线长为4,E是母线的中点,则()A.圆台的侧面积为B.圆台的内切球的表面积为C.圆台的体积为D.在圆台侧面上从到的最短路径的长度为【答案】ACD【解析】【分析】根据圆台、球、最短距离等知识对选项进行分析,从而确定正确答案.【详解】轴截面梯形的上底为2,下底为6,高为,母线长为,设侧面展开图的扇环对应的圆心为,,,所以侧面展开图是半圆环(如图),所以圆台的侧面积,圆台的体积.因为梯形有半径为的内切圆(两组对边的和相等),所以圆台的内切球半径为,表面积为.在圆台侧面上从到的最短路径,在展开图中是线段.故选:ACD12.已知函数,则()A.时,函数在上单调递增B.时,若有3个零点,则实数的取值范围是C.若直线与曲线有3个不同的交点,,,且,则D.若存在极值点,且,其中,则【答案】BD【解析】【分析】根据函数求导后公式及结合的取值情况可对A项判断;,求出再结合函数极大小值即可对B项判断;求出函数的二阶导数,从而求出对称中心点即可对C项判断;根据函数存在极值点再结合令,求出,即可对D项判断.【详解】对于A:求导,当时,有2个不相等的实根,,在区间上,单调递减,故选项A错误.对于B:当时,令,得,,若有3个零点,则极大值,极小值,实数的取值范围是,故选项B正确.对于C:令二阶导数,得,则三次函数的对称中心是.当直线与曲线有3个不同的交点,,,且时,点一定是对称中心,所以,故选项C错误.对于D:若存在极值点,则,,.令,得,因为,于是,所以,化简得:,因为,故,于是,即.故选项D正确.故选:BD.三、填空题:本题共4小题,每小题5分,共20分.13.在一次篮球比赛中,某支球队共进行了8场比赛,得分分别为29,30,38,25,37,40,42,32,那么这组数据的第75百分位数为______.【答案】39【解析】【分析】根据第75百分位数的定义计算可得答案.【详解】8场比赛的得分从小到大排列为:25,29,30,32,37,38,40,42,因为,所以第75百分位数为.故答案为:3914.设向量和满足,,则的值为__________.【答案】2【解析】【分析】根据平面向量的模及数量积运算量即可解答.【详解】因为,所以,,所以.故答案为:215.已知函数,若不等式恒成立,则的最小值为__________.【答案】【解析】【分析】根据函数求出其单调性,且,从而可得,再结合函数的单调性从而求解.【详解】由函数在上单调递增,所以函数在上单调递减,且,所以,,由函数单调性可得.所以,构造函数,,当时,,在区间单调递增,所以,所以恒成立,构造函数,,当,,在区间上单调递增;当,,在区间上单调递减;所以当时取得极大值也是最大值,因此,所以,的最小值为.故答案为:.16.若是关于的方程(a,b都是整数)的一个实根,则__________.【答案】0【解析】【分析】由,转化为,利用待定系数法法求解.【详解】因为,所以,所以,又,所以,又因为,所以,,则.故答案为:0四、解答题:本大题共6小题,共70分、解答应写出文字说明、证明过程或演算步骤.17.函数的部分图象如图所示.(1)求函数的解析式;(2)将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,求函数在上的值域.【答案】(1)(2)【解析】【分析】(1)根据图象易得和周期,结合可得结果;(2)根据平移和伸缩变换可得,进而由整体法即可求解函数的值域.【小问1详解】观察图象可得,函数的周期,解得,即,由,得,即,,而,则,所以函数的解析式是.【小问2详解】将的图象向左平移个单位长度,可得到函数的图象,再将所得图象上各点的横坐标缩短为原来的,纵坐标不变,得到函数的图象,则,当时,,则,所以,因此在上的值域为.18.从2021年秋季学期起,安徽省启动实施高考综合改革,实行高考科目“”模式,“3”指语文、数学、外语三门统考学科,以原始分数计入高考成绩;“1”指考生从物理、历史两门学科中“首选”一门学科,以原始分数计入高考成绩;“2”指考生从政治、地理、生物、生物四门学科中“再选”两门学科,以等级分计入高考成绩.按照方案,再选学科的等级分赋分规则如下,将考生原始成绩从高到低划分为A,B,C,D,E五个等级,各等级人数所占比例及赋分区间如下表:等级ABCDE人数比例15%35%35%13%2%赋分区间将各等级内考生的原始分依照等比例转换法分别转换到赋分区间内,得到等级分,转换公式为,其中,分别表示原始分区间的最低分和最高分,,分别表示等级赋分区间的最低分和最高分,表示考生的原始分,表示考生的等级分,规定原始分为时,等级分为.某次生物考试的原始分最低分为45,最高分为94,呈连续整数分布,分成五组:第一组,第二组,第三组,第四组,第五组,绘制成如图所示的频率分布直方图.已知第一、二组的频率之和为0.3,第一组和第五组的频率相同.(1)根据频率分布直方图求a,b的值,并估计此次生物考试原始分的平均值;(2)按照等级分赋分规则,估计此次考试生物成绩A等级的原始分区间;(3)用估计的结果近似代替原始分区间,若某学生生物成绩的原始分为83,试计算其等级分.【答案】(1),平均分为69.5分;(2);(3)89分.【解析】【分析】(1)由题设及直方图列方程组求参数,再根据直方图求平均值;(2)由区间占比和成绩等级占比分析出等级的原始分区间最低分所在区间,并求出最低分,即可得结果;(3)根据赋分转换公式求等级分即可.【小问1详解】由题意知:,解得,故每组的频率依次为:0.05,0.25,0.45,0.2,0.05,所以生物原始分的平均值等于分.【小问2详解】由频率分布直方图知,原始分成绩位于区间的占比为,位于区间的占比为,因为成绩等级占比为,所以等级的原始分区间最低分位于区间,估计等级的原始分区间的最低分为分,已知最高分为94,所以估计此次考试生物成绩等级的原始分区间为.【小问3详解】由,解得,该学生的等级分为89分.19.如图,在四棱锥中,底面是边长为4的菱形,,,点在线段上,,平面平面.(1)求四面体的体积;(2)求直线与平面所成角的正弦值.【答案】(1)(2)【解析】【分析】(1)取的中点,连接,过点作的平行线,易证,根据面面垂直的性质可得平面,从而可得平面,以点为原点,建立空间直角坐标系,取的中点,连接,根据求得点得坐标,根据,求出,再根据锥体得体积公式即可得解;(2)利用向量法求解即可.【小问1详解】取的中点,连接,过点作的平行线,在菱形中,为等边三角形,又底面是边长为4的菱形,,且,又平面平面,平面平面平面,平面,又平面,又平面,又,如图以点原点,建立空间直角坐标系,,取的中点,连接,则,,,设,则,由,得,即,设,则,,,;【小问2详解】设平面的一个法向量为,由,得取,又,∴直线与平面所成角的正弦值为:.20.记的内角A,B,C的对边分别为a,b,c,满足.(1)求;(2)若角的平分线交于点,且,求面积的最小值.【答案】(1)(2).【解析】【分析】(1)由已知结合正弦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2020版 沪教版 高中音乐 必修1 音乐鉴赏 下篇《第五单元 声情戏韵》大单元整体教学设计2020课标
- 桶装水店员工合同
- 提前终止租赁合同模板
- 2025年南充道路运输货运考试题库
- 2025年阳泉货运从业资格证考试题库答案
- 《壁纸图集》课件
- 2025年烟台b2从业资格证模拟考试题目
- 2025年孝感道路货运从业资格证模拟考试
- 2025年池州考货运资格证考试内容
- 集团资金支付与收款风险控制
- 《零件测绘》学业水平考试题库(浓缩300题)
- 集美大学航海技术船舶避碰与值班教案2课件
- 《护理管理制度》
- 2021年安徽省公务员录用考试《行测》真题及答案
- 标准跨径20m简支T型梁桥设计
- 班会心理健康教育课件
- 实验四 哈夫曼树与哈夫曼编码
- 预防早恋 早婚早育
- 拆除钢结构安全施工方案
- GB/T 43333-2023独立型微电网调试与验收规范
- 心理健康教育主题班会课件(共38张)
评论
0/150
提交评论