煤沉积过程成煤构造环境中英文对照外文翻译文献_第1页
煤沉积过程成煤构造环境中英文对照外文翻译文献_第2页
煤沉积过程成煤构造环境中英文对照外文翻译文献_第3页
煤沉积过程成煤构造环境中英文对照外文翻译文献_第4页
煤沉积过程成煤构造环境中英文对照外文翻译文献_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中英文对照外文翻译中英文对照外文翻译Coal-ProducingTectonicEnvironmentsThisfinalchapterintheinvestigationofcoalsedimentationisconcernedwithdepositionalaspectsofthehighestorderofmagnitude,namely,theinfluenceofthecrustalsettingonpeataccumulation.Thisisabroadandcomplexfieldwhichdrawsoninformation,gatheredfrommanydifferentdisciplinesoftheearthsciences.Someofthesearecurrentlyevolvingquiterapidly,whileothersreina“moppingup”stage,insensuKuhn(1970)andWalker(1973),followingrecentscientificrevolutions.Anexampleofthelatteristhereplacementofthegeosynclinalhypothesisintheearly1970sbytheconceptofplatetectonics.Evenafteralifespanof20years,thisnewparadigmisstillintheprocessofbeingrefinedandfittedoutwithconceptualsubsets,asshownbythecurrentemphasisonterraneanalysis.Itisthereforenotpossibleatthisstagetomakeadefinitivestatementonthechosensubject,butmerelytooutlinetheprincipleonwhichamoderngeotectonicclassificationofcoalfieldscanbeestablished.Eventhismodestgoalisfraughtwithdifficulty,becausethechangefromthepredominantlystaticgeosynclinalviewofglobaltectonicstoitsmodern,largelymobilisticinterpretationhascomplicatedthetectonicclassificationofsomecoalfields.Whilethetectonicstatusofmanycoalfields,e.g.thoseinforedeepsorforelandbasinshaschangedrelativelylittle,thesettingofcoalsfoundininter-andintramontanetroughs,i.e.withinorogeniccordilleras,cannotbeproperlyassessedwithoutverycarefulstudy.Accordingtothegeosynclinalconcept,practicallyalloftheseintradeeps,togetherwithfore-andbackdeeps,theirextra-orogeniccounterparts,wereregardedaspartofagroupofmolassesbasins,thedevelopmentofwhichaccompaniesorfollows“terminalgeosynclinaltecto-orrgenic”(Aubouin1965).Thisfixistandstrictlysequentialinterpretation(highlightedbytheterm“epieugeosyncline”ofKay1951)hasnoplaceinmoderngeotectonicanalysis,whichviewsmostorogenicbeltsascollagesofautochthonousandallochthonousterranes,i.e.astectono-stratigraphicassemblageswithpossiblycoevalbutheterogeneousstratigraphicrecordsreflectingtheiroriginindifferentgeologicalandgeographicaldomains(MongerandPrice1979,Mongeretal.1982).Thetectonicsetting,whichinfluencedtheformationofanallochthonousterraneassemblagebeforeaccretion,mayhavebeenverydifferentinstyleandphysicallyfarremovedfromitsrestingplaceafterdocking.Itfollowsthatamulti-terraneorogenmaycontainavarietyofcoalsformedatdifferenttimesbeforeandafterterraneaccretion.Moreover,contemporaneouspre-accretionarycoaldepositsformedindifferentterranesarelikelytovaryincoaltypes,coalificationhistoriesandtectonicstyles,andallofthesewillinturndifferfromthepost-accretionarymolassescoals,whichalonereflecttheconditionaprevailingintheorogenitself.Indeed,thesituationmayevenbemorecomplex,aswillbediscussedinChap..Platetectonicshascreateditsownnomenclature,ofwhichonlytheessentialtermswillbeusedhere.Theywillbesupplementedbytermswhichareeitherdescriptive,andthereforeindependentofgeotectonictheory,orwhichhavestoodthetestoftimebecausetheyareusefulinspiteoftheirgenericassociationwithnowobsoleteconcepts.Forexample,theexpressions“mio-”and“eugeosynclinalassemblage”havebeenkepthereasreferencetermforshallowwatermarine(mainlyshelf),andoceanfloorpelagite,turbiditeandophioliteassociationa,respectively.Moreover,reducedtoa“miogeocline”,themiogeosynclinehasintheNorth-Americanliteraturebecomeastandardtermforautochthonous,sedimentaryterracewedgesonlappingcontinentalmargins.Alsotectonicattributesofsediments,suchas“synorogenic”flyschand“latesyn-(folded)topostorogenic(non-folded)”molasses,respectively,canstillbeusedinaplatetectoniccontextwithoutundulycorruptingtheirrelativelyloosedefinitions.Particularlyinthediscussionofcoalfieldssituatednearconvergentplateedges,theconceptofmolassesastheproductofthedestructionoftheupliftedorogenisveryuseful.Asinthepreviousdiscussion,itisnotthepurposeofthischaptertogivedetaileddescriptionsofalargenumberofcasesbuttoselectafewtypicalexamplesofcoalfieldsandrelatetheessenceoftheirarchitecturetotheirrespectiveplatetectonicsettings.1EarlyExamplesofaTectonicClassificationofCoalfieldsLarge-scalecoalformationcantakeplaceonlyinactivelysubsidingregions,forexampleinsedimentarybasins.Itispossiblethereforetocharacterisethegeotectonicenvironmentoccupiedbyacoalmeasuresequenceinamannersimilartothatwhichisappliedtoothersedimentaryenvironments.Stutzer(1920)andStille(1926)wereamongthefirsttorecognisethegeneticlinksbetweentectonismandtheformationofcoal.Stille,inparticular,referredtothestrikingdifferenceintermsofbasinfill,numberofcoalseamspresent,theiraveragethicknessandproportioninrelationtototalcoalmeasurethickness,whichexistbetweentheCarboniferousandTertiarycoalmeasuresofEurope.HeattributedsuchdissimilaritiestocontrastingdegreesofcrustalmobilityintheareasaffectedbythetwomainEuropeancoal-formingperiods.HisresultsaresummarizedinTable9.1.EvenifdifferencesincompactionratiosbetweentheTertiarybrownandCarboniferousbituminouscoalsaretakenintoaccount(toalesserdegreethecompactionappliestointer-seamsediments)thecontrastisquiteremarkable.LateritwasshownbyvonBubnoff(1937)thatthedistributionoftheworldreservesofcoalisalsorelatedtothegeotectonicsettingofcoalfields.HisconclusionsaresummarizedinTable9.2,whichindicatesthatofallcoaldepositsknownupto1937,some71%developedinformertectonicallyveryactiveenvironments,particularlyinthemolassesforedeepswhichdevelopadjacenttoorogenicbeltsandreceivemuchoftheweathereddebriswasheddownfromtheuplands.CarboniferouscoalmeasuresinmobileVaricanbasinsTertiarycoalmeasuresincratonicbasinsofCentralEuropeAveragecoalmeasurethickness3000m150mAveragenumberofcoalseams2002Averageseamthickness1m15mCumulativethicknessofcoal180m25mProportionoftotalcoal6%16.7%Proportionofeconomicinsitucoal3.6%12%Table9.1.Stille’s(1926)comparison(slightlymodified)betweensomecharacteristicsofcoalmeasuresformedintectonicallymobileandcratonisedpartsofEurope,respectivelyTable9.2.Thedistributionofworldreservesofcoalinreferencetothegeotectonicsettingofcoalfields.(AftervonBubnoff1937)Foredeepsmarginaltoorogenicbelts70%Intradeepswithinorogenicbelts1%Shelfbasinsoncratonicmargins21%Cratonicinterior8%Theconcentrationofcoalintheregionsassociatedwithorogenicbeltsisevenmorehighlightedwhenthelateralextentofthedepositsisconsidered.Coalfieldssituatedwithinorontheshelfmarginsofcratonscoverawiderareathanthecomparativelynarrowforedeeps,butitsarealrestrictioniscompensatedbythefrequencyofcoalseamsoccurringinathickstackofcoalmeasures.Aswillbediscussedlater,thisisrelatedtothesubstantialandprolongedsubsidencethatthecontinentalmarginissubjectedtonearasubductioncomplex,asanorogenicbeltisaccretedontotheplateedge.Itisnotsurprising,therefore,thatvonBubnoff(1937)foundalsoaclosetemporalrelationshipbetweenorogeniesandcoalformationinNorthAmerica,Europe,AsiaandSouthernContinents.Ofcourse,therearemajororogeniesknownwhicharenotassociatedwithcoaldeposits.However,invariably,theirabsenceisrelatedtofactorsaffectingthevegetablesource.Forexample,allpre-Devonianorogeniesoccurredatatimewhentheplantkingdomwasstillinsufficientlyequippedbyevolutiontofulfilitsroleasaneffectiveproducerofpeat.Thecontinentalshelfenvironment,beinglessmobile,hasproducedfewercoaldepositsthantheorogenicdomain.Inthiscontextitisimportanttodefinethetermshelf.Tothegeographer,theshelfregionisusuallythatpartoftheseawhichextendsbetweenthestrand-lineandthecontinentalslope.However,asvonBubnoff(1948a)noted,thepositionofthestrandlineisquiteincidentaldependingoncrustalmovementsandrelativesealevelpositions.Fromthegeologicalviewpoint,itappearsthereforeusefultoextendthedefinitionoftheshelfsothatthetimefactorcanbeaccommodated.Shelfregionsmaythenberegardedasthosemarginalbutfuullyintegratedzonesofcontinentswhichareoccasionallyaffectedbyshallowmarinetransgressions.Typicalareasarethetrailingedgesofcontinentalplatesandthecratonicmarginsofforedeeps.Commonlytwotypesofshelfenvironmentsaredistinguished,calledstableandunstable,respectively(vonBubnoff1948a;KrumbeinandSloss1963).Themajorityfortheirassociatedcoalfieldsisparalicincharacter,whichishighlightedbytheintercalationofcoalmeasureswithmarinestrata,afeaturethatisalsocommontothemolassesforedeeps.However,marinestratamaynotalwaysberecognizedbecauseoflackoffossils,whichisrelatedtothedilutionofseawaterbyanexcessiveinfluxoffreshwaterfromthenearbycoastalswamps(DuffandWalton1962).Intracratoniccoalfieldsandthoseformedinintramontancbasinsarefrequentlylimnicincharacter,i.e.theyhavenohydrologicalconnectiontothesea,becausetheyhavebeenformedinland-lockedbasinsabovethethenprevailingsealevel.AspectacularmodernexampleofintramontanepeatformationoccursinthereedmarshesontheshoresofLakeTiticaca,3810mabovesealevelintheSouthAmericanAndes.Comparedwiththeirparaliccounterpartslimniccoalfieldshavesmallsizeandunstablepositionabovedepositionalbaselevel.However,asindicatedabove,thetermintradeepmaycoveracomplexarrayofdepositionalenvironments,someofwhichmaybetotallyunrelatedtotheorogeninwhichtheynowoccur.ThelastgroupofcoalfieldsmentionedinTable9.2occursintheinteriorofcontinentalareas.Theyowetheirexistencetoavarietyofeventsincludingepeirogenicsaggingofcontinentalcrustandcontinentalrifting.Manypeatandcoaldepositsformedonconsolidatedbasementhavenotectonicoriginatall,butaretheresultofpaludificationrelatedtodifferentialsubsidence.Examplesaresubsidenceduetosaltmigrationandleachinginthesubsurface,ortheformationofsinksisolatedcoalfieldsaretheresultoftheterrestrialisationoflakes.Mostofthesecoalfieldsarelimnic,butraremarineincursionsmayhaveoccurredduringtheirdevelopment.Thetectonicsettingofacoalfieldexertsastronginfluenceonthetypeofcoalthatisformedwithinitsboundaries.Hacquebardetal.(1967),Mackowsky(1968),ShibaokaandSmyth(1975),Hunt(1982)andothershavedemonstratedthatcoalcompositionvariesmoreinlargeparalicdepositsthaninlimnicsetting,becauseofthelargervarietyoffactorsinfluencingextensivecontinentalshelforforedeepenvironments.Moreover,coalsformedinrapidlysubsidingforelandbasinsaremorelikelytohavehighvitrite,clariteandashcontentsthancoalsformedoncratonicshelvesorinslowlysubsidingcratonicbasins.Thesecoalsarelikelytoberichindullcoalsconsistingmainlyofduriteinertite.2BasinFormationasPartofPlateTectonicsThetheoryofplatetectonics,althoughprimarilyconcernedwithhorizontalmovementsoftherelativelyrigidlithosphericplates(crustanduppermostmantle)overthesofterasthenosphere(mantle),hasalsoprovidedanexplanationfortheverticalmovementsthatleadtosubsidenceandbasinformation.Thefollowingcrustalmovementscanbedistinguished(afterDickinson1974andFischer1975):Changeincrustalthickness.Accordingtotheprincipleofisostasythicklow-densitycontinentalcrustfloatshigheronheavymantlematerialthanthinhigh-densityoceaniccrust.Forexample,anisostaticallycompensatedcontinentalcrustof50kmthicknessextends4kmabovethesea,whereasa6-km-thinoceaniccrustiscoveredbyapproximately5kmofwater(Holmes,1965).Platetectonicsprovidesseveralmechanismsforbothcrustalthickeningandthinning.Thelatter,whichisofimmediateinteresthere,isoftenexemplifiedinareasofcontinentalrifting,whereintheearlystagesofplateseparationthecrustalongtheriftzoneisattenuatedbyextensionalstep-faulting,thusformingrapidlysubsidinggrabensandhalf-grabens.Erosionalthiningofanisostaticallyupliftedcrustalportionsalsoleadstosubsequentsubsidence.Upliftduetocrustalthickeningisofsomeinterestinthiscontext,becauseitcreatespotentialsourceareasforcoalmeasuresediments.Thisisparticularlyimportantinforedeeps,wherebasinformationisinvariablycoupledwithupliftinnearbyorogenicbelts.Mostexamplesofupliftduetocrustalthickeningarerelatedeithertotheinjectionofmagmaintothecrustortocontinentalcollision.Changeinthermalregime.Convectioncurrentsintheplasticasthenosphereareresponsiblenotonlyforhorizontalplatemovementsbutalsoforsomeverticalcrustalmotionswhichareindependentofceustalthickness.Upwellingmagmafromthemantlemaycauseupliftbyformingheatbulgesintheoverlyingcrust,andnewoceaniccrustisformedwheresuchmantlematerialisextrudedalongmid-oceanicriftzones.Thelatterareelevatedabovetheseafloorbecauseofthermalexpansionoftheaffectedcrustwhichbecomescolderanddenserwithincreasingageanddistancefiomtherisecrest.Areasofthermaltumescencewithinoralongthemarginofcontinentalplatesaresubjectedtoerosionalthinning,whichaccentuatestheirsubsidenceduringtheperiodofthermaldecay.Loadingaffects.Whensedimentsaccumulateonanisostaticallycompensatedcrusttheadditionalloadwillcreateadisequilibriumwhichwillbebalancedbysubsidence.Thismeansthat,whatevertheinitialcauseforthecreationofadepositionalsite,oncesedimentsarebeginningtoaccumulate,theirweightandcompactionareinsomemeasureresponsibleforthedepositionofadditionalsediments.This,tosomeextentself-prepetuatingprocessisparticularlywellshownbytheflexuralbendingunderloadofthecontinentalshelfmargin(Walcott1972).Othercommongeotectonicsitesforload-inducedsubsidenceandsedimentationareorogenicfordeepmarginswhichareflexurallydown-warpedundertheweightoftheoverridingthrustsheetsgeneratedintheadjacentfoldbelt(Price1973;Laubscher1978;Beaumont1981;QuinlanandBeaumont1984).Additionalloadingofthedownwardlyflexedcrustisprovidedbythemassofmolassessedimentsproducedinthefoldbeltandtransportedintothedevelopingforedeep.Ashasbeendiscussedbefore,additionalcausesofsedimentandcoalformationareprovidedbysubsurfacesaltmigrationandleaching,andeustaticsea-levelchanges,inparticularbytheirinteractionwithcrustalmovements,whichproduceavarietyofsedimentaryresponsesindifferenttectonicdomains.Forexample,riftingofoceaniccrusthasdepositionalconsequencesquitedifferentfromtheseparationofcontinentalcrust.Theriftingofcontinentalcrustmayleadtocoalformation,buttheriftingofoceaniccrustisunlikelytoleadtotheformationofcoal.AsurveyoftheeffectsofthegeotectonicsettingofcoalfieldsonpeataccumulationandcoalcompositionrequiresthereforeanunderstandingofthemajorcrustalelementsofEarthandtheirprincipalmotions.Aplate-tectonicinterpretationofthemaincrustalelementsinreferencetotheirabilitytoprovidesuitablesitesfortheformationofcoalissummarizedinFig.9.1.Thisinterpretationisbasedonthenotionthatthecreationofnewlithosphericcrustalongmid-oceanicriftsandthelateralmovementofthelithosphericslabstowardssubductionzones,whereoceaniccrustisconsumed,producethreetypesofplatejunctures.Theseare(afterDickinson1974):1.Divergentplateedges,whereplateseparationtakesplaceandthedevelopinggapisfilledbyupwellingmantlematerialweldingnewoceaniccrusttotheseparatingplates.2.Convergentplateedges,whereoldcrustissubductedintothemantleunderneaththeleadingedgeoftheoverridingplate.3.Transformplateedges,whereadjacentplatesarelaterallydisplacebymovementalongstrike-slipfaults.Fig.9.1.ThegeotectonicsettingofcoalfieldsinreferencetoCurray’s(1975)plate-tectonicsubdivisionsoftheearth.Theidentificationofcountriesisbyinternationalcountrycode.ThetectonicsubdivisionsofcoalfieldsusedbyvonBubnoff(1937)inTable9.2canbebroadlyaccommodatedwithintheplatetectonicframeworkofFig.9.1.Thefore-andmanyintradeepsarepartofplateconvergencecomplexes,whichinviewoftheiroverwhelmingquantitative,i.e.economicimportance,willbediscussedfirst.Themidplatecontinentalmarginisthesettingofshelfdeposits,whereasthecratonicandriftvalleysettingsrefertotheinteriorofconsolidatedareas.3CoalfieldsSituatedNearConvergentPlateEdgesTherelationshipsbetweentectonicsettingandcoalcontentofaregioninferredfromTables9.1and9.2suggestthatcoalcanformmorefrequentlyingeologicalenvironmentscapableofofferingalargernumberandvarietyofcrustalmovementsperunittimethanlessmobileareas.Asmentionedabove,thisisareatureofforedeeps,whichhavebeenprolificcoalproducersinthepat.Mountainchainsconsistingoffoldedandoftenmetamorphosedrocksareformedaslinearandoftenarcuateweltsalongtheedgesofconvergingplatesbyanumberoftectonicandmagmaticevents,allofwhichappeartobeprimarilyrelatedtotheprocessofsubduction.However,notallformersubductionzoneshaveledtotheformationofcoalfields,whichisaproblemrelatedtothenatureoftheconvergingplates,i.e.whethertheyconsistofoceanicorcontinentalcrust.AccordingtoFigs.9.1and9.2,therearethreescenarios:Subductionofoceaniccrustbeneatnoceaniccrust(Fig.9.2A).Itisunlikelythatthissituationwillleadtosignificantcoalfieldformationbecauseoftheconsiderablewatercoveroftheseafloor.Oceaniccrustemergesabovewateronlywhereithasbeenthickenedbymagmaticinjectionandmaythenproduceisolatedsmallcoaloccurrences.However,aslongasonlyoceaniccrustisinvolved,thelackofastrongnearbysedimentsourceleavestheadjacentoceanbasinstarvedandtoodeepforpeataccumulation.Conversely,compositearcsystems,inwhichseveralsubductionzonesareoperatingsimultaneouslyinoppositedirectionsand/orinwhichallochthonouscrustalfragments(terranes)havebeenaccretedtothearcsystem,mayprovidesuitableconditionsforcoalformation.AnexamplearetheJapaneseislands,whichcontaincoalfieldsofTertiaryageinbothfore-andbackarcpositions(Aihara1986).Forearcbasinselsewherearenotknowntobesignificantcoalproducersduetothetectonicinstabilityduringthebasinstageandthesubsequentdestructionbytectonism.Theoccurrenceofa3000-m-thickPalaeogenesuccessionoffoldedandfaultedcoalmeasuresintheHidakaBasinofcentralHokkaido,describedbyAihara(1986),isthereforeacomparativelyrarecaseofathickcoalmeasuresequenceformedandpreservedinaforearcsetting.Subductionofoceaniccrustunderneathcontinentalcrust(Fig.9.2B).Thereareseveralpastandpresentexamplesofextensivecoalformationassociatedwiththistypeofplateconvergence.Themaincoalfieldsformedintheprocessoccupyretroarcbasins(Dickinson1974)filledwiththicksedimentarysuccessions.Thebeginningofsedimentationisprobablyrelatedtoextensionaltectonicsinthebackarcarea,atatimewhensubductionisstillinprocess.However,duringandfollowingtheaccretionofallochthonousterranestheretroarcbasinissubjectedtoacompressionalstressregimewhichcausesittosubsideundertheweightofoverridingthrustwedges.Partialsubductionofcontinentalcrustbeneathcontinentalcrust(Fig.9.2C).Thistyperepresentsanexampleofcontinentalcollision.Becauseofitsthicknessandlowdensity,continentalcrustcanonlypartiallybesubductedwhichleadstotectonicstackingandoverlapofthetwoplatemargins.Theconditionsofcoalformationsinaretroarcbasinarethesameasin(2)fortheoverridingplate.Inaddition,atleasttwolociofpotentialpeataccumulationarecontributedbytheconsumedplate,one(usuallydestroyedbysubsequentorogenesisandmetamorphism)intheformofthecontinentalshelfmarginwhichwasformedbeforecollisionoccurred,andtheotherintheformofaperipheralbasin(Dickinson1974)formedatthefootofthecollisionbelt.Retroarcandperipheralbasinssharethesamebasicforedeeparchitecture(Beaumont1981),becausebotharetheproductsofflexuraldownwarpingoftheunderlyingcrustfollowingloadingbyoverridingthruetsheets.Fig.9.2A-C.Threepossibilitiesofplateconvergence.Continentalcrust;ocaniccrust;volcanics;◦◦◦molassessediments;∙∙∙marinesediments中文:成煤构造环境在已知的煤沉积过程中,这种最终阶段是与影响泥炭堆积外在的呈最高状态的重要的沉积因素相联系的。这是一个宽广且复杂的领域,它吸收了聚集地球科学许多不同学科的知识。一部分领域已经相当迅速的普遍展开,而其他的一些在跟随最近的科学革命处于一个结束期。在20世纪70年代早期的地槽假说被板块构造理论所替代就是后者中的一个例子。即使在经过20年后,这种新的模式仍处于被改进或装备于概念的子集,同时在地形分析中被列为通用的重点的过程中。因此,在这个时期对于被选择的题目做一个决定性的陈述是不可能的,但是,只是描述关于现代大地构造因素方面的煤田分类是可以建立的。这种现代化目标的实现是充满困难的,因为要从占优势的全球构造学静止地槽的观点变为现代的,大量的活动论解释使得一些煤田的构造分类变得复杂。当许多煤田的构造情况,例如那些前渊或陆前盆地已经相对改变一点,建立在内部或山间的槽即造山的山脉上的煤田装置,如果没有仔细的学习是不能被适当的分派下去。根据该地槽的概念,几乎所有的这些内渊,连同前渊和后渊,他们的超级造山带对口,被视为一组稳定地块的一部分,其中伴随着“有机终端地槽构造”的发展(Aubouin1965)。这固定的并严格层序的解释(Kay所强调的“后成优地槽”1951)并没有发生在现代大地构造分析中,其中的大部分造山带被作为拼贴的本地成因和异地成因的地形,即作为构造地层组合与可能同时代不均匀的地层记录,反映其原产地在不同的地质上或地理上的领域(MongerandPrice1979,Mongeretal.1982)。构造环境,这也影响到形成一个异地岩层组合前的堆积,在远离了物源地沉积下来后,在类型和形态上可能已经非常不同。它如下一个多造山带的岩层可能含有各种煤形成于不同时期之前和之后的岩层的堆积。此外,当代加积前形成的煤炭储量在不同的地形很可能会有所不同,在煤的类型,煤化历史和构造样式,所有这些将在来自不同加积后的稳定地块煤盆地,其中仅反映在造山带本身条件普遍存在。事实上,情况甚至可能会更加复杂,将在chap.讨论。板块构造已创造了自己的名称,其中只有基本术语将被用于在这里。他们对辅助术语有的只是描述性的,因此独立的大地构造理论中,有的经受了时间的考验,因为他们在通用的而现在已经过时的概念中是有用的。举例来说,词“中新世”和“优地槽组合”一直在用,涉及到浅海(主要是大陆架),和深海结核,浊积岩和蛇绿岩套,分别作为参考。此外,提到“冒地向斜”,冒地槽已在北美文献中成为一个标准的原地术语,沉积阶地边缘超覆了大陆边缘。同样沉积物的构造特征,如“同造山期的”复理石和“后期的同褶皱到造山期(没有褶皱作用)”的稳定地块,分别地,仍然可以用在一个板块构造背景下,没有不必要的混淆他们的相对精确的定义。尤其是在讨论煤田位于聚合的板块边缘,稳定地块的概念用在造成破坏该隆起造山带是十分有益的。由于在先前的讨论,也不是本章的目的给予详细说明了一大批例子,但要选择几个典型的涉及了本质和结构的煤田,以各自的板块构造建立。1一个早期的煤田构造分类的例子大型煤田的形成可以发生的地方,只有在活跃的下陷地区,例如在沉积盆地。因此,用一个煤系序列表征大地构造环境的方式表示其他适用的沉积环境是有可能的。Stutzer(1920)和Stille(1926)第一次确认构造与成煤之间的成因关系。Stille,尤其是提到突出差异而言,欧洲盆地充填中煤层的平均厚度和的比例关系与总煤系厚度的联系,在这之间存在的石炭纪和第三纪煤的数量。他归因于这样的相似性,以对比程度的地壳的流动性,在欧洲的两个主要成煤期受影响地区。他的结果总结在表9.1.中。即使在第三系褐色和石炭系沥青煤压实比率之间的不同的计算(在较小程度压实适用于跨煤层沉积物)的对比是相当显着的。后来结果表明,由vonBubnoff(1937)表示,分布世界各地的煤的储量是与煤田的大地构造环境有关的。他的结论的摘要列于表9.2,这表明在1937年所有的煤炭储量都已经知道,约71%的是发展构造非常活跃的环境,特别是在稳定地块盆地前渊发展来的,其中毗邻造山带和从高地来的接收的许多风化碎片。表9.1.Stille’s(1926)一些比较(略作修改)石炭系的煤在移动的Varican盆地中的数量第三系的煤在欧洲中部克拉通盆地中的数量平均煤系厚度3000m150m平均煤层数量2002平均煤层厚度1m15m累积煤层厚度180m25m产出煤占总量比例6%16.7%煤占经济比例3.6%12%分述在构造移动盆地和欧洲部分克拉通盆地特征煤的数量表9.2.分布在世界储备煤中提到了大地构造环境的煤田。(vonBubnoff1937之后)前渊边际到造山带70%内渊造山带内1%在克拉通盆地边缘的陆架盆地21%克拉通盆地内部8%侧向范围的沉积被认为在与造山带相关的地区的煤的聚集中更是突出的。煤田位于沙洲的边缘或沙洲内古陆核的涵盖了更广阔的领域较相对狭窄的前渊,但其地域的限制,是补偿的频率煤层发生在一个一定数量厚的煤层。正如我们将在所后面讨论的,这是涉及到大量的和长期沉陷的被认为在大陆边缘受到附近俯冲的复杂的,作为一个造山带是与板块边缘共生的。这是不足为奇的,因此,在北美,欧洲,亚洲和南部大陆vonBubnoff(1937)还发现一个山脉与成煤之间的相近关系。当然,那儿已知的山脉与煤的沉积是没有关系的。但是,往往他们的缺失是与影响植物来源有关的。例如,所有的前泥盆纪造山带发生的时候,植物界仍然不能满足作为生产泥炭的作用。大陆架的环境,缺少移动性,比造山作用产生的煤炭沉积少。在这方面是定义大陆架这个术语是很重要的。对于地理学来说,大陆架地区向海的部分通常在股线和大陆斜坡之间延伸。不过,由于vonBubnoff(1948a)指出,滨线的位置是相当偶然的,决定于地壳运动和海平面位置.从地质的角度来看,大陆架定义的扩大似乎是有用的,因此时间的因素可以忽略。大陆架地区可能被视为边缘的那些地区,但大陆的完整区域是偶尔受浅海的超覆。典型的地区是在大陆边缘的尾端,大陆板块和克拉通边缘的前渊。常见的两种类型是大陆架是显著的环境,分别为所谓的稳定和不稳定(vonBubnoff1948a;KrumbeinandSloss1963)。多数与它们相关的煤田是近海特征,这是所强调的插层煤在海相地层中的数量,其中一个特征是稳定地块盆地前渊普遍存在的。不过,因为缺少化石,海相地层不一定一直得到承认,这是与过量的新鲜水从沿海沼泽大量涌入有关的(DuffandWalton1962)。克拉通内的煤田和那些形成于山间盆地的煤田在特征上经常是湖泊相的,即它们对于海洋来说没有水文学的意义,因为他们在后来的海平面之上已经形成堵塞的内陆盆地。一个引人注目的现代的例子,山脉之间内泥炭的形成是发生在南美安第斯山脉高于海平面3810米芦苇沼泽对海岸的的湖。与他们相比,在沉积基底的水平面之上近海成因的相对湖泊成因煤田有规模小和不稳定的特征。然而,如上文所示,术语内渊可能包括一个复杂系列的沉积环境,其中一些可能会与造山带现在发生的完全无关。最后一批在表9.2提到的煤田发生在内部的大陆地区。他们应该归功于各种各样的活动,包括造陆下陷大陆地壳和大陆裂谷。许多泥炭和煤炭沉积的形成是基于没有构造的起源在所有,但泥炭化的结果是与不同的沉降有关的。这些例子是由于沉积物在地下迁移和过滤后沉淀,或下沉的孤立煤田的形成是由于该陆表的湖泊。大部分的这些煤田是湖泊相的,但罕见的海侵可能发生在他们的发展过程中。在形成其边界过程中,煤田的构造环境有着重要的影响力。Hacquebard等(1967),Mackowsky(1968),ShibaokaandSmyth(1975),Hunt(1982)和其他人已经表明,煤的组成在很大程度上近海相比湖泊相呈现更大的不同,因为大量的不同因素影响宽广的大陆架或前渊盆地环境。此外,煤的形成在迅速下沉前陆盆地更可能有高含量的微镜煤,微亮煤和灰分比煤形成的稳定的边缘上,或在慢慢下沉克拉通盆地。这些煤很可能是丰富的暗煤为主的微惰性煤。2盆地形成作为板块构造理论的一部分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论