![广东省韶关市乳源县重点达标名校2024届中考适应性考试数学试题含解析_第1页](http://file4.renrendoc.com/view10/M00/15/03/wKhkGWWAgbeAWT5SAAIff3mS60s843.jpg)
![广东省韶关市乳源县重点达标名校2024届中考适应性考试数学试题含解析_第2页](http://file4.renrendoc.com/view10/M00/15/03/wKhkGWWAgbeAWT5SAAIff3mS60s8432.jpg)
![广东省韶关市乳源县重点达标名校2024届中考适应性考试数学试题含解析_第3页](http://file4.renrendoc.com/view10/M00/15/03/wKhkGWWAgbeAWT5SAAIff3mS60s8433.jpg)
![广东省韶关市乳源县重点达标名校2024届中考适应性考试数学试题含解析_第4页](http://file4.renrendoc.com/view10/M00/15/03/wKhkGWWAgbeAWT5SAAIff3mS60s8434.jpg)
![广东省韶关市乳源县重点达标名校2024届中考适应性考试数学试题含解析_第5页](http://file4.renrendoc.com/view10/M00/15/03/wKhkGWWAgbeAWT5SAAIff3mS60s8435.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省韶关市乳源县重点达标名校2024学年中考适应性考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.如图,△ABC的面积为12,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C处,P为直线AD上的一点,则线段BP的长可能是()A.3 B.5 C.6 D.102.如图,矩形ABCD中,AB=3,AD=4,连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当线段BE′和线段BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为()A. B. C. D.3.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是()A.将l1向左平移2个单位 B.将l1向右平移2个单位C.将l1向上平移2个单位 D.将l1向下平移2个单位4.绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n100300400600100020003000发芽的粒数m9628238257094819042850发芽的频率0.9600.9400.9550.9500.9480.9520.950下面有三个推断:①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;②根据上表,估计绿豆发芽的概率是0.95;③若n为4000,估计绿豆发芽的粒数大约为3800粒.其中推断合理的是()A.① B.①② C.①③ D.②③5.下列是我国四座城市的地铁标志图,其中是中心对称图形的是()A. B. C. D.6.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A.的长 B.的长 C.的长 D.的长7.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为()A. B. C. D.68.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是()A.2k-2B.k-1C.kD.k+19.满足不等式组的整数解是()A.﹣2 B.﹣1 C.0 D.110.如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n>1)个点.当n=2018时,这个图形总的点数S为()A.8064 B.8067 C.8068 D.8072二、填空题(本大题共6个小题,每小题3分,共18分)11.16的算术平方根是.12.下面是“利用直角三角形作矩形”尺规作图的过程.已知:如图1,在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.小明的作法如下:如图2,(1)分别以点A、C为圆心,大于AC同样长为半径作弧,两弧交于点E、F;(2)作直线EF,直线EF交AC于点O;(3)作射线BO,在BO上截取OD,使得OD=OB;(4)连接AD,CD.∴四边形ABCD就是所求作的矩形.老师说,“小明的作法正确.”请回答,小明作图的依据是:__________________________________________________.13.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起分钟该容器内的水恰好放完.14.若式子在实数范围内有意义,则x的取值范围是_______.15.在实数范围内分解因式:=_________16.已知一粒米的质量是1.111121千克,这个数字用科学记数法表示为__________.三、解答题(共8题,共72分)17.(8分)先化简,然后从中选出一个合适的整数作为的值代入求值.18.(8分)已知直线y=mx+n(m≠0,且m,n为常数)与双曲线y=(k<0)在第一象限交于A,B两点,C,D是该双曲线另一支上两点,且A、B、C、D四点按顺时针顺序排列.(1)如图,若m=﹣,n=,点B的纵坐标为,①求k的值;②作线段CD,使CD∥AB且CD=AB,并简述作法;(2)若四边形ABCD为矩形,A的坐标为(1,5),①求m,n的值;②点P(a,b)是双曲线y=第一象限上一动点,当S△APC≥24时,则a的取值范围是.19.(8分)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=6,求DE的长.20.(8分)已知,如图所示直线y=kx+2(k≠0)与反比例函数y=(m≠0)分别交于点P,与y轴、x轴分别交于点A和点B,且cos∠ABO=,过P点作x轴的垂线交于点C,连接AC,(1)求一次函数的解析式.(2)若AC是△PCB的中线,求反比例函数的关系式.21.(8分)如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.22.(10分)解分式方程:=23.(12分)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?24.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的长为;(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】
过B作BN⊥AC于N,BM⊥AD于M,根据折叠得出∠C′AB=∠CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD的最短距离是8,得出选项即可.【题目详解】解:如图:
过B作BN⊥AC于N,BM⊥AD于M,
∵将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,
∴∠C′AB=∠CAB,
∴BN=BM,
∵△ABC的面积等于12,边AC=3,
∴×AC×BN=12,
∴BN=8,
∴BM=8,
即点B到AD的最短距离是8,
∴BP的长不小于8,
即只有选项D符合,
故选D.【题目点拨】本题考查的知识点是折叠的性质,三角形的面积,角平分线性质的应用,解题关键是求出B到AD的最短距离,注意:角平分线上的点到角的两边的距离相等.2、A【解题分析】
先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,则AF=4-=.再过G作GH∥BF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.【题目详解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=,∴AF=4-=.过G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,∵GH∥FB,∴=,即=,解得x=.故选A.【题目点拨】本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.3、C【解题分析】
根据“上加下减”的原则求解即可.【题目详解】将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.故选:C.【题目点拨】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.4、D【解题分析】
①利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,①错误;②利用频率估计概率,大量反复试验下频率稳定值即概率,可得②正确;③用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,③正确.【题目详解】①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误;②根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;③若n为4000,估计绿豆发芽的粒数大约为4000×0.950=3800粒,此结论正确.故选D.【题目点拨】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.5、D【解题分析】
根据中心对称图形的定义解答即可.【题目详解】选项A不是中心对称图形;选项B不是中心对称图形;选项C不是中心对称图形;选项D是中心对称图形.故选D.【题目点拨】本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键.6、B【解题分析】【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.【解答】用求根公式求得:∵∴∴AD的长就是方程的正根.故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.7、A【解题分析】
根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.【题目详解】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故选A.【题目点拨】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8、A【解题分析】
先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.【题目详解】∵0<k<1,∴k-1<0,∴此函数是减函数,∵1≤x≤1,∴当x=1时,y最小=1(k-1)+1=1k-1.故选A.【题目点拨】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.9、C【解题分析】
先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.【题目详解】∵解不等式①得:x≤0.5,解不等式②得:x>-1,∴不等式组的解集为-1<x≤0.5,∴不等式组的整数解为0,故选C.【题目点拨】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键.10、C【解题分析】分析:本题重点注意各个顶点同时在两条边上,计算点的个数时,不要把顶点重复计算了.详解:此题中要计算点的个数,可以类似周长的计算方法进行,但应注意各个顶点重复了一次.如当n=2时,共有S2=4×2﹣4=4;当n=3时,共有S3=4×3﹣4,…,依此类推,即Sn=4n﹣4,当n=2018时,S2018=4×2018﹣4=1.故选C.点睛:本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律.二、填空题(本大题共6个小题,每小题3分,共18分)11、4【解题分析】
正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为412、到线段两端点的距离相等的点在这条线段的垂直平分线上;对角线互相平分的四边形为平行四边形;有一个角为90°的平行四边形为矩形【解题分析】
先利用作法判定OA=OC,OD=OB,则根据平行四边形的判定方法判断四边形ABCD为平行四边形,然后根据矩形的判定方法判断四边形ABCD为矩形.【题目详解】解:由作法得EF垂直平分AC,则OA=OC,而OD=OB,所以四边形ABCD为平行四边形,而∠ABC=90°,所以四边形ABCD为矩形.故答案为到线段两段点的距离相等的点在这条线段的垂直平分线上;对角线互相平分的四边形为平行四边形;有一个内角为90°的平行四边形为矩形.【题目点拨】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.13、8。【解题分析】根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论:由函数图象得:进水管每分钟的进水量为:20÷4=5升。设出水管每分钟的出水量为a升,由函数图象,得,解得:。∴关闭进水管后出水管放完水的时间为:(分钟)。14、x≠﹣1【解题分析】
分式有意义的条件是分母不等于零.【题目详解】∵式子在实数范围内有意义,∴x+1≠0,解得:x≠-1.
故答案是:x≠-1.【题目点拨】考查的是分式有意义的条件,掌握分式有意义的条件是解题的关键.15、2(x+)(x-).【解题分析】
先提取公因式2后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.【题目详解】2x2-6=2(x2-3)=2(x+)(x-).
故答案为2(x+)(x-).【题目点拨】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.16、2.1×【解题分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.【题目详解】解:1.111121=2.1×11-2.
故答案为:2.1×11-2.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×11-n,其中1≤|a|<11,n由原数左边起第一个不为零的数字前面的1的个数所决定.三、解答题(共8题,共72分)17、-1【解题分析】
先化简,再选出一个合适的整数代入即可,要注意a的取值范围.【题目详解】解:,当时,原式.【题目点拨】本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.18、(1)①k=5;②见解析,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)①;②0<a<1或a>5【解题分析】
(1)①求出直线的解析式,利用待定系数法即可解决问题;②如图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)①求出A,B两点坐标,利用待定系数法即可解决问题;②分两种情形求出△PAC的面积=24时a的值,即可判断.【题目详解】(1)①∵,,∴直线的解析式为,∵点B在直线上,纵坐标为,∴,解得x=2∴,∴;②如下图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)①∵点在上,∴k=5,∵四边形ABCD是矩形,∴OA=OB=OC=OD,∴A,B关于直线y=x对称,∴,则有:,解得;②如下图,当点P在点A的右侧时,作点C关于y轴的对称点C′,连接AC,AC′,PC,PC′,PA.∵A,C关于原点对称,,∴,∵,当时,∴,∴,∴a=5或(舍弃),当点P在点A的左侧时,同法可得a=1,∴满足条件的a的范围为或.【题目点拨】本题属于反比例函数与一次函数的综合问题,熟练掌握待定系数法解函数解析式以及交点坐标的求法是解决本题的关键.19、(1)证明见解析;(2).【解题分析】
(1)由BD是△ABC的角平分线,DE∥AB,可证得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得四边形ADEF是平行四边形;(2)过点E作EH⊥BD于点H,由∠ABC=60°,BD是∠ABC的平分线,可求得BH的长,从而求得BE、DE的长,即可求得答案.【题目详解】(1)证明:∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四边形ADEF是平行四边形;(2)解:过点E作EH⊥BD于点H.∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DH=BD=×6=3,∵BE=DE,∴BH=DH=3,∴BE==,∴DE=BE=.【题目点拨】此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法.20、(2)y=2x+2;(2)y=.【解题分析】
(2)由cos∠ABO=,可得到tan∠ABO=2,从而可得到k=2;(2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P的坐标代入反比例函数的解析式可求得m的值.【题目详解】(2)∵cos∠ABO=,∴tan∠ABO=2.又∵OA=2∴OB=2.B(-2,0)代入y=kx+2得k=2∴一次函数的解析式为y=2x+2.(2)当x=0时,y=2,∴A(0,2).当y=0时,2x+2=0,解得:x=﹣2.∴B(﹣2,0).∵AC是△PCB的中线,∴P(2,4).∴m=xy=2×4=4,∴反例函数的解析式为y=.【题目点拨】本题主要考查的是反比例函数与一次函数的交点、锐角三角函数的定义、中点坐标公式的应用,确定一次函数系数k=tan∠ABO是解题的关键.21、见解析【解题分析】试题分析:根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS推出△BCD≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可.试题解析:∵△ABC是等边三角形,∴AC=BC,∠B=∠ACB=60°,∵线段CD绕点C顺时针旋转60°得到CE,∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD与△ACE中,,
∴△BCD≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE∥BC.22、x=1【解题分析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【题目详解】方程两边都乘以x(x﹣2),得:x=1(x﹣2),解得:x=1,检验:x=1时,x(x﹣2)=1×1=1≠0,则分式方程的解为x=1.【题目点拨】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元【解题分析】解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组得:,…2分解方程组得:,∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元…4分;(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,∴,…6分解得:50≤x≤53,…7分∵x为正整数,∴共有4种进货方案…8分;(3)因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件.…10分总利润=50×20+50×30=2500(元)∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元.…12分24、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2).【解题分析】分析:(4)过点B作BH⊥OA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(4)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.详解:(4)过点B作BH⊥OA于H,如图4(4),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案为4.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2).由(4)得:OH=2,BH=4.∵OC与⊙M相切于N,∴MN⊥OC.设圆的半径为r,则MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.解得:r=2,∴D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中央空调安装工程承包合同(2篇)
- 2025年二手房屋装修合同(五篇)
- 2025年买卖电子合同协议(三篇)
- 2025年个人简单门面房屋租赁合同范文(2篇)
- 亲子乐园土方运输协议
- 壁球馆装修项目协议
- 2025年度安全费用监管合同执行与评估-@-1
- 2025年度网络安全操作规范协议
- 文具用品运输合同样本
- 学校装修合同终止协议书
- 产后康复-腹直肌分离
- 丙烯-危险化学品安全周知卡
- 粉条加工厂建设项目可行性研究报告
- 《配电网设施可靠性评价指标导则》
- 2024年国家电网招聘之通信类题库附参考答案(考试直接用)
- CJJ 169-2012城镇道路路面设计规范
- 食品企业日管控周排查月调度记录及其报告格式参考
- 产品质量法解读课件1
- 第八单元金属和金属材料单元复习题-2023-2024学年九年级化学人教版下册
- 仓库搬迁及改进方案课件
- 精神科护理技能5.3出走行为的防范与护理
评论
0/150
提交评论