广西玉林博白县市级名校2024届中考数学考试模拟冲刺卷含解析_第1页
广西玉林博白县市级名校2024届中考数学考试模拟冲刺卷含解析_第2页
广西玉林博白县市级名校2024届中考数学考试模拟冲刺卷含解析_第3页
广西玉林博白县市级名校2024届中考数学考试模拟冲刺卷含解析_第4页
广西玉林博白县市级名校2024届中考数学考试模拟冲刺卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西玉林博白县市级名校2024年中考数学考试模拟冲刺卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果两圆只有两条公切线,那么这两圆的位置关系是()A.内切 B.外切 C.相交 D.外离2.下列各式计算正确的是()A.a+3a=3a2 B.(–a2)3=–a6 C.a3·a4=a7 D.(a+b)2=a2–2ab+b23.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.84.如图是由4个相同的正方体搭成的几何体,则其俯视图是()A. B. C. D.5.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.① B.② C.③ D.④6.下列运算结果正确的是()A.3a﹣a=2B.(a﹣b)2=a2﹣b2C.a(a+b)=a2+bD.6ab2÷2ab=3b7.已知二次函数y=3(x﹣1)2+k的图象上有三点A(,y1),B(2,y2),C(﹣,y3),则y1、y2、y3的大小关系为()A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y18.已知关于x的不等式组﹣1<2x+b<1的解满足0<x<2,则b满足的条件是()A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣39.下列关于统计与概率的知识说法正确的是()A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B.检测100只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数10.若二次函数的图象经过点(﹣1,0),则方程的解为()A., B., C., D.,11.如图,在RtΔABC中,AB=9,BC=6,∠B=90°,将ΔABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.52 B.53 C.412.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是()A.120° B.135° C.150° D.165°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC=cm.14.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为_____.15.方程的解是__________.16.比较大小:_____1(填“<”或“>”或“=”).17.观察下列等式:第1个等式:a1=;第2个等式:a2=;第3个等式:a3=;…请按以上规律解答下列问题:(1)列出第5个等式:a5=_____;(2)求a1+a2+a3+…+an=,那么n的值为_____.18.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,▱ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,求∠AEB的度数.20.(6分)如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DE⊥AC于E,DF⊥AB于F.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度.21.(6分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.22.(8分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:.她把这个数“?”猜成5,请你帮小华解这个分式方程;小华的妈妈说:“我看到标准答案是:方程的增根是,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?23.(8分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.24.(10分)如图,在平行四边形ABCD中,AB<BC.利用尺规作图,在AD边上确定点E,使点E到边AB,BC的距离相等(不写作法,保留作图痕迹);若BC=8,CD=5,则CE=.25.(10分)发现如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……An中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……An中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.26.(12分)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.求BF的长.27.(12分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】

两圆内含时,无公切线;两圆内切时,只有一条公切线;两圆外离时,有4条公切线;两圆外切时,有3条公切线;两圆相交时,有2条公切线.【题目详解】根据两圆相交时才有2条公切线.故选C.【题目点拨】本题考查了圆与圆的位置关系.熟悉两圆的不同位置关系中的外公切线和内公切线的条数.2、C【解题分析】

根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.【题目详解】A.a+3a=4a,故不正确;B.(–a2)3=(-a)6,故不正确;C.a3·a4=a7,故正确;D.(a+b)2=a2+2ab+b2,故不正确;故选C.【题目点拨】本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.3、B【解题分析】试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故选B.考点:作图—基本作图;含30度角的直角三角形.4、A【解题分析】试题分析:从上面看是一行3个正方形.故选A考点:三视图5、A【解题分析】

根据题意得到原几何体的主视图,结合主视图选择.【题目详解】解:原几何体的主视图是:.视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.故取走的正方体是①.故选A.【题目点拨】本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.6、D【解题分析】

各项计算得到结果,即可作出判断.【题目详解】解:A、原式=2a,不符合题意;

B、原式=a2-2ab+b2,不符合题意;

C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;

故选D【题目点拨】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.7、D【解题分析】试题分析:根据二次函数的解析式y=3(x-1)2+k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3>y2>y1.故选D点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.8、C【解题分析】

根据不等式的性质得出x的解集,进而解答即可.【题目详解】∵-1<2x+b<1∴,∵关于x的不等式组-1<2x+b<1的解满足0<x<2,∴,解得:-3≤b≤-1,故选C.【题目点拨】此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集.9、B【解题分析】

根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.【题目详解】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选B.【题目点拨】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.10、C【解题分析】

∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.故选C.考点:抛物线与x轴的交点.11、C【解题分析】

设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.【题目详解】设BN=x,则AN=9-x.由折叠的性质,得DN=AN=9-x.因为点D是BC的中点,所以BD=3.在RtΔNBD中,由勾股定理,得BN即x2解得x=4,故线段BN的长为4.故选C.【题目点拨】此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键.12、C【解题分析】

这个扇形的圆心角的度数为n°,根据弧长公式得到20π=,然后解方程即可.【题目详解】解:设这个扇形的圆心角的度数为n°,根据题意得20π=,解得n=150,即这个扇形的圆心角为150°.故选C.【题目点拨】本题考查了弧长公式:L=(n为扇形的圆心角的度数,R为扇形所在圆的半径).二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1.【解题分析】试题分析:如图,∵矩形的对边平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考点:1轴对称;2矩形的性质;3等腰三角形.14、.【解题分析】

由AE=3EC,△ADE的面积为3,可知△ADC的面积为4,再根据点D为OB的中点,得到△ADC的面积为梯形BOCA面积的一半,即梯形BOCA的面积为8,设A(x,),从而表示出梯形BOCA的面积关于k的等式,求解即可.【题目详解】如图,连接DC,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1.∴△ADC的面积为4.∵点A在双曲线y=的第一象限的那一支上,∴设A点坐标为(x,).∵OC=2AB,∴OC=2x.∵点D为OB的中点,∴△ADC的面积为梯形BOCA面积的一半,∴梯形BOCA的面积为8.∴梯形BOCA的面积=,解得.【题目点拨】反比例函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,同底三角形面积的计算,梯形中位线的性质.15、.【解题分析】

根据解分式方程的步骤依次计算可得.【题目详解】解:去分母,得:,解得:,当时,,所以是原分式方程的解,故答案为:.【题目点拨】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.16、<【解题分析】

∵≈0.62,0.62<1,∴<1;故答案为<.17、49【解题分析】

(1)观察等式可得然后根据此规律就可解决问题;

(2)只需运用以上规律,采用拆项相消法即可解决问题.【题目详解】(1)观察等式,可得以下规律:,∴(2)解得:n=49.故答案为:49.【题目点拨】属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.18、1.【解题分析】

根据一副直角三角板的各个角的度数,结合三角形内角和定理,即可求解.【题目详解】∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=1°.故答案为:1.【题目点拨】本题主要考查三角形的内角和定理以及对顶角的性质,掌握三角形的内角和等于180°,是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、135°【解题分析】

先证明AD=DE=CE=BC,得出∠DAE=∠AED,∠CBE=∠CEB,∠EDC=∠ECD=45°,设∠DAE=∠AED=x,∠CBE=∠CEB=y,求出∠ADC=225°-2x,∠BAD=2x-45°,由平行四边形的对角相等得出方程,求出x+y=135°,即可得出结果.【题目详解】解:∵四边形ABCD是平行四边形,∴AD=BC,∠BAD=∠BCD,∠BAD+∠ADC=180°,∵AD=DE=CE,∴AD=DE=CE=BC,∴∠DAE=∠AED,∠CBE=∠CEB,∵∠DEC=90°,∴∠EDC=∠ECD=45°,设∠DAE=∠AED=x,∠CBE=∠CEB=y,∴∠ADE=180°﹣2x,∠BCE=180°﹣2y,∴∠ADC=180°﹣2x+45°=225°﹣2x,∠BCD=225°﹣2y,∴∠BAD=180°﹣(225°﹣2x)=2x﹣45°,∴2x﹣45°=225°﹣2y,∴x+y=135°,∴∠AEB=360°﹣135°﹣90°=135°.【题目点拨】本题考查了平行四边形的性质,解题的关键是熟练的掌握平行四边形的性质.20、(1)DE与⊙O相切,证明见解析;(2)AC=8.【解题分析】(1)解:(1)DE与⊙O相切.证明:连接OD、AD,∵点D是的中点,∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切.(2)连接BC,根据△ODF与△ABC相似,求得AC的长.AC=821、(1)详见解析;(2)详见解析;(3)图见解析,点P坐标为(2,0).【解题分析】

(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;(2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;(3)找出A的对称点A′,连接BA′,与x轴交点即为P.【题目详解】(1)如图1所示,△A1B1C1,即为所求:(2)如图2所示,△A2B2C2,即为所求:(3)找出A的对称点A′(1,﹣1),连接BA′,与x轴交点即为P;如图3所示,点P即为所求,点P坐标为(2,0).【题目点拨】本题考查作图-旋转变换,平移变换,轴对称最短问题等知识,得出对应点位置是解题关键.22、(1);(2)原分式方程中“?”代表的数是-1.【解题分析】

(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【题目详解】(1)方程两边同时乘以得解得经检验,是原分式方程的解.(2)设?为,方程两边同时乘以得由于是原分式方程的增根,所以把代入上面的等式得所以,原分式方程中“?”代表的数是-1.【题目点拨】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:

①化分式方程为整式方程;

②把增根代入整式方程即可求得相关字母的值.23、(1)详见解析;(2);(3)【解题分析】

(1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;

(2)过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到,由三角函数的定义即可得到结论;

(3)连接BC,根据勾股定理得到BC==12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论.【题目详解】(1)连接OC,

∵OA=OC,

∴∠A=∠OCA,

∵AC∥OP,

∴∠A=∠BOP,∠ACO=∠COP,

∴∠COP=∠BOP,

∵PB是⊙O的切线,AB是⊙O的直径,

∴∠OBP=90°,

在△POC与△POB中,,

∴△COP≌△BOP,

∴∠OCP=∠OBP=90°,

∴PC是⊙O的切线;

(2)过O作OD⊥AC于D,

∴∠ODC=∠OCP=90°,CD=AC,

∵∠DCO=∠COP,

∴△ODC∽△PCO,

∴,

∴CD•OP=OC2,

∵OP=AC,

∴AC=OP,

∴CD=OP,

∴OP•OP=OC2

∴,

∴sin∠CPO=;

(3)连接BC,

∵AB是⊙O的直径,

∴AC⊥BC,

∵AC=9,AB=1,

∴BC==12,

当CM⊥AB时,

d=AM,f=BM,

∴d+f=AM+BM=1,

当M与B重合时,

d=9,f=0,

∴d+f=9,

∴d+f的取值范围是:9≤d+f≤1.【题目点拨】本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键.24、(1)见解析;(2)1.【解题分析】试题分析:根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.试题解析:(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.考点:作图—复杂作图;平行四边形的性质25、(1)见解析;(2)见解析;(3)1.【解题分析】

(1)如图2,延长AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如图3,延长AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出规律即可解答【题目详解】(1)如图2,延长AB交CD于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论