版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第04讲解题技巧专题:勾股定理与面积问题、方程思想目录TOC\o"1-3"\h\u【典型例题】 1【考点一三角形中,利用面积求斜边上的高】 1【考点二结合乘法公式巧求面积或长度】 7【考点三巧妙割补求面积】 9【考点四“勾股树”及其拓展类型求面积】 12【考点五几何图形中的方程思想—折叠问题(利用等边建立方程)】 18【考点六几何图形中的方程思想—公边问题(利用公边建立方程)】 22【考点七实际问题中的方程思想】 25【考点一三角形中,利用面积求斜边上的高】例题:在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是________.【变式训练】1.一个直角三角形的两条直角边边长分别为6和8,则斜边上的高为(
)A.4.5 B.4.6 C.4.8 D.52.(2022·黑龙江牡丹江·八年级期中)在由边长为1的小正方形构成网格中的位置如图所示,则边上的高是(
)A.5 B. C.6 D.3.(2022·全国·八年级课时练习)如图,在网格中,每个小正方形的边长均为1.点A、B,C都在格点上,若BD是△ABC的高,则BD的长为__________.4.如图,在中,,,是的边上的高,且,,,求的边上的高.5.如图,在中,,,在中,是边上的高,,.(1)求的长.(2)求斜边边上的高.6.我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,这两边交点为勾股顶点.(1)特例感知如图1,已知△ABC为勾股高三角形,其中A为勾股顶点,AD是BC边上的高.若BD=3,CD=1,试求线段AD的长度.(2)深入探究如图2,已知△ABC为勾股高三角形,其中A为勾股顶点且AC>AB,AD是BC边上的高.试探究线段CD与AB的数量关系,并给予证明.【考点二结合乘法公式巧求面积或长度】例题:已知在中,所对的边分别为a,b,c,若,则的面积为(
)A. B. C. D.【变式训练】1.在中,AD是BC边上的高,,则的面积为(
)A.18 B.24 C.18或24 D.18或303.直角三边长分别是x,和5,则的面积为__________.【考点三巧妙割补求面积】例题:如图,是一块草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块草坪的面积.【变式训练】1.如图,在四边形ABCD中,∠A=90°,AB=6,AD=8,BC=24,DC=26,求四边形ABCD的面积.2.如图,在5×5的方格纸中,每一个小正方形的边长都为1(1)线段BC=,线段CD=;(2)求四边形ABCD的面积.(可以根据需要添加字母)3.)如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形格点上,(1)边AC、AB、BC的长;(2)求△ABC的面积;(3)点C到AB边的距离【考点四“勾股树”及其拓展类型求面积】例题:(2023秋·重庆渝中·八年级重庆巴蜀中学校考期末)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是6、10、4、6,则最大正方形E的面积是(
)A.20 B.26 C.30 D.52【变式训练】1.(2023·广西柳州·校考一模)如图,,正方形和正方形的面积分别是289和225,则以为直径的半圆的面积是()A. B. C. D.2.(2023春·新疆阿克苏·八年级校考期中)如图,三个正方形中的两个的面积,,则另一个的正方形的面积为_____________3.(2023春·全国·八年级专题练习)如图,以的三边向外作正方形,其面积分别为且,则___________;以的三边向外作等边三角形,其面积分别为,则三者之间的关系为___________.4.(2023春·八年级课时练习)已知:在中,,、、所对的边分别记作a、b、c.如图1,分别以的三条边为边长向外作正方形,其正方形的面积由小到大分别记作、、,则有,(1)如图2,分别以的三条边为直径向外作半圆,其半圆的面积由小到大分、、,请问与有怎样的数量关系,并证明你的结论;(2)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2Sa,根据(2)中的探索,直接回答与有怎样的数量关系;(3)若中,,,求出图4中阴影部分的面积.5.(2023春·江西南昌·八年级南昌市第三中学校考期中)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①如图2,3,4,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,面积分别为,,,利用勾股定理,判断这3个图形中面积关系满足的有________个.②如图5,分别以直角三角形三边为直径作半圆,设图中两个月牙形图案(图中阴影部分)的面积分别为,,直角三角形面积为,也满足吗?若满足,请证明;若不满足,请求出,,的数量关系.(2)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图6所示的“勾股树”.在如图7所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,则__________.【考点五几何图形中的方程思想—折叠问题(利用等边建立方程)】例题:如图,将直角三角形纸片沿AD折叠,使点B落在AC延长线上的点E处.若AC=3,BC=4,则图中阴影部分的面积是()A. B. C. D.【变式训练】1.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是________cm2.2.如图,三角形纸片中,,,.是边上一点,连接,把沿翻折,点恰好落在延长线上的点处,则的长为__________.3.在长方形ABCD中,AB=8,BC=10,P是边AD上一点,将△ABP沿着直线BP翻折得到△A'BP.(1)如图1,当A'在BC上时,连接AA',求AA'的长;(2)如图2,当AP=6时,连接A'D,求A'D的长.【考点六几何图形中的方程思想—公边问题(利用公边建立方程)】例题:如图,在△ABC中,AB=10,BC=9,AC=17,则BC边上的高为_______.【变式训练】1.已知:如图,在中,是的角平分线,,则____.
2.如图,在和中,,,,延长,交于点.
(1)求证:点A在的平分线上;(2)若,,,求的长.【考点七实际问题中的方程思想】例题:(2022·全国·八年级)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地……”翻译成现代文为:如图,秋千绳索OA悬挂于O点,静止时竖直下垂,A点为踏板位置,踏板离地高度为一尺(AC=1尺).将它往前推进两步(EB⊥OC于点E,且EB=10尺),踏板升高到点B位置,此时踏板离地五尺(BD=CE=5尺),则秋千绳索(OA或OB)长______尺.【变式训练】1.(2022·全国·八年级课时练习)如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸 B.52寸 C.101寸 D.104寸2.(2022·河南·金明中小学八年级期中)《九章算术》是我国古代数学名著,有题译文如下:今有门,不知其高宽;有竿,不知其长短.横放,竿比门宽长出4尺;竖放,竿比门高短2尺;斜放,门对角线长恰好是竿长的倍.问门高、门宽各为多少?3.(2022·重庆市求精中学校八年级期中)在一条东西走向的河的一侧有一村庄C,河边原有两个取水点A,B,其中,由于某种原由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得千米,千米,千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明.(2)求原来的路线AC的长.4.(2022·浙江·浦江县实验中学八年级期中)图1是一张可以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林艺术学院《劳动教育II》2021-2022学年第一学期期末试卷
- 房产经纪人返佣协议书范本模板
- 主播外出安全协议书范文范本
- 2024年大商铺出租转让协议书模板范本
- 【初中数学】整式的加法与减法课件 2024-2025学年人教版数学七年级上册
- 2024年处理废石协议书模板范本
- 资金代管协议书范文样本
- 2025(新人教版)地理八年级下册全册复习知识清单 课件
- 吉林师范大学《数字剪辑创作》2021-2022学年第一学期期末试卷
- 吉林师范大学《量子力学》2021-2022学年第一学期期末试卷
- 2024-2030年中国虚拟专用网络(VPN)行业市场行业发展分析及发展前景研究报告
- 检验检测机构内审员检查表
- 2024中煤电力限公司面向中煤集团内部招聘15人高频难、易错点500题模拟试题附带答案详解
- 统编版(2024新版)七年级上册历史第二单元 夏商周时期:奴隶制王朝的更替和向封建社会的过渡 单元复习课件
- 第07讲 物态变化(原卷版)-2024全国初中物理竞赛试题编选
- 高危儿规范化健康管理专家共识解读
- 第13课《纪念白求恩》课件2024-2025学年统编版语文七年级上册
- 食品安全的规章制度和食品操作流程
- 《义务教育体育与健康课程标准(2022年版)》解读
- 部编版三年级上册语文第七单元大单元教学设计
- NB-T 10435-2020 电动汽车快速更换电池箱锁止机构通.用技术要求
评论
0/150
提交评论