2023-2024学年四川省成都市高新区八上数学期末统考试题含解析_第1页
2023-2024学年四川省成都市高新区八上数学期末统考试题含解析_第2页
2023-2024学年四川省成都市高新区八上数学期末统考试题含解析_第3页
2023-2024学年四川省成都市高新区八上数学期末统考试题含解析_第4页
2023-2024学年四川省成都市高新区八上数学期末统考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年四川省成都市高新区八上数学期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.以下列各组长度的线段为边,其中a>3,能构成三角形的是()A.2a+7,a+3,a+4 B.5a²,6a²,10a²C.3a,4a,a D.a-1,a-2,3a-32.如图,是线段上的两点,.以点为圆心,长为半径画弧;再以点为圆心,长为半径画弧,两弧交于点,连结,则一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形3.如图,△ABC中,AB=AC,AD⊥BC,垂足为D,DE∥AB,交AC于点E,则下列结论不正确的是()A.∠CAD=∠BAD B.BD=CD C.AE=ED D.DE=DB4.下面计算正确的是()A.2a+3b=5ab B.a2+a3=a5 C.(﹣2a3b2)3=﹣8a9b6 D.a3•a2=a65.下列各组数为勾股数的是()A.6,12,13B.3,4,7C.8,15,16D.5,12,136.2019年被称为中国的5G元年,如果运用5G技术,下载一个2.4M的短视频大约只需要0.000048秒,将数字0.000048用科学记数法表示应为()A.0.48×10﹣4 B.4.8×10﹣5 C.4.8×10﹣4 D.48×10﹣67.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.6 B.5 C.4 D.38.解分式方程时,去分母化为一元一次方程,正确的是()A.x+2=3 B.x﹣2=3 C.x﹣2=3(2x﹣1) D.x+2=3(2x﹣1)9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积为4cm2,则△BEF的面积等于()A.2cm2 B.1cm2 C.1.5cm2 D.1.25cm210.下列多项式中,不能用平方差公式分解的是()A. B.C. D.二、填空题(每小题3分,共24分)11.阅读理解:对于任意正整数,,∵,∴,∴,只有当时,等号成立;结论:在(、均为正实数)中,只有当时,有最小值.若,有最小值为__________.12.如图,将长方形ABCD的边AD沿折痕AE折叠,使点D落在BC上的F处,若AB=5,AD=13,则EF=_____.13.已知函数y=x+m-2019(m是常数)是正比例函数,则m=____________14.如图,点在内,因为,,垂足分别是、,,所以平分,理由是______.15.已知等腰三角形一个外角的度数为,则顶角度数为____________.16.关于一次函数有如下说法:①当时,随的增大而减小;②当时,函数图象经过一、二、三象限;③函数图象一定经过点;④将直线向下移动个单位长度后所得直线表达式为.其中说法正确的序号是__________.17.若x2+bx+c=(x+5)(x-3),其中b,c为常数,则点P(b,c)关于y轴对称的点的坐标是________.18.若关于和的二元一次方程组,满足,那么的取值范围是_____.三、解答题(共66分)19.(10分)在△ABC中,∠ACB=2∠B,(1)如图①,当∠C=90°,AD为∠ABC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.请证明AB=AC+CD;(2)①如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请直接写出你的结论,不要求证明;②如图③,当∠C≠90°,AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想并证明.20.(6分)如图,四边形ABCD中,AB∥DC,AB=AD,求证:BD平分∠ADC.21.(6分)如图,AD

△ABC

的角平分线,DE⊥AB

于点

E,DF⊥AC

于点

F,连接

EF

AD

于点

O.(1)求证:AD垂直平分EF;(2)若∠BAC=,写出DO与AD之间的数量关系,不需证明.22.(8分)如图,四边形ABDC中,∠D=∠ABD=90゜,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:AB+CD=AC23.(8分)化简分式,并在、、、、中选一个你喜欢的数作为的值,求代数式的值24.(8分)如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.25.(10分)如图,在中,,将沿着折叠以后点正好落在边上的点处.(1)当时,求的度数;(2)当,时,求线段的长.26.(10分)计算:(1)(+1)(2-)(2)

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据三角形的三边关系和a的取值范围逐一判断即可.【详解】解:A.(a+3)+(a+4)=2a+7,不能构成三角形,故本选项不符合题意;B.5a²+6a²>10a²,能构成三角形,故本选项符合题意;C.3a+a=4a,不能构成三角形,故本选项不符合题意;D.(a-1)+(a-2)=2a-3<2a-3+a=3a-3,不能构成三角形,故本选项不符合题意.故选B.【点睛】此题考查的是判断三条线段是否能构成三角形,掌握三角形的三边关系是解决此题的关键.2、B【分析】先根据题意确定AC、BC、AB的长,然后运用勾股定理逆定理判定即可.【详解】解:由题意得:AC=AN=2AM=8,BC=MB=MN+NB=4+2=6,AB=AM+MN+NB=10∴AC2=64,BC2=36,AB2=100,∴AC2+BC2=AB2∴一定是直角三角形.故选:B.【点睛】本题主要考查了勾股定理逆定理的应用,根据题意确定AC、BC、AB的长是解答本题的关键.3、D【解析】根据等腰三角形的性质,平行线的性质解答即可.【详解】∵AB=AC,AD⊥BC,∴∠CAD=∠BAD,A正确,不符合题意;BD=CD,B正确,不符合题意;∵DE∥AB,∴∠EDA=∠BAD.∵∠EAD=∠BAD,∴∠EAD=∠EDA,∴AE=ED,C正确,不符合题意;DE与DB的关系不确定,D错误,符合题意.故选D.【点睛】本题考查了等腰三角形的判定与性质,平行线的性质,掌握等腰三角形的判定与性质是解题的关键.4、C【分析】分别根据合并同类项的法则,积的乘方运算法则以及同底数幂的乘法法则逐一判断即可.【详解】解:2a与3b不是同类项,所以不能合并,故选项A不合题意;

a2与a3不是同类项,所以不能合并,故选项B不合题意;

(-2a3b2)3=-8a9b6,正确,故选项C符合题意;

a3•a2=a5,故选项D不合题意.

故选:C.【点睛】本题主要考查了合并同类项,幂的乘方与积的乘方及同底数幂的乘法,熟记幂的运算法则是解答本题的关键.5、D【解析】A选项:62+122≠132,故此选项错误;

B选项:32+42≠72,故此选项错误;

C选项:因为82+152≠162,故此选项错误;

D选项:52+122=132,故此选项正确.

故选D.【点睛】一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.6、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数字0.000048用科学记数法表示应为4.8×10﹣1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、C【分析】由∠ABC=15°,AD是高,得出BD=AD后,证△ADC≌△BDH后,得到BH=AC,即可求解.【详解】∵∠ABC=15°,AD⊥BC,∴AD=BD,∠ADC=∠BDH,∵∠AHE+∠DAC=90°,∠DAC+∠C=90°,∴∠AHE=∠BHD=∠C,在△ADC与△BDH中,∴△ADC≌△BDH∴BH=AC=1.故选C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.由∠ABC=15°,AD是高,得出BD=AD是正确解答本题的关键.8、C【分析】最简公分母是2x﹣1,方程两边都乘以(2x﹣1),即可把分式方程便可转化成一元一次方程.【详解】方程两边都乘以(2x﹣1),得x﹣2=3(2x﹣1),故选C.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9、B【分析】依据三角形的面积公式及点D、E、F分别为边BC,AD,CE的中点,推出从而求得△BEF的面积.【详解】解:∵点D、E、F分别为边BC,AD,CE的中点,∵△ABC的面积是4,

∴S△BEF=2.故选:B【点睛】本题主要考查了与三角形的中线有关的三角形面积问题,关键是根据三角形的面积公式S=×底×高,得出等底同高的两个三角形的面积相等.10、D【分析】根据平方差公式a2-b2=(a+b)(a-b),分别判断得出即可.【详解】解:A、a2b2-1=(ab+1)(ab-1),可以用平方差公式分解因式,故此选项错误;B、4-0.25a2=(2-0.5a)(2+0.5a),可以用平方差公式分解因式,故此选项错误;C、-x2+1=(1+x)(1-x),可以用平方差公式分解因式,故此选项错误;D、不能用平方差公式分解因式,故此选项正确;故选D.【点睛】本题主要考查了公式法分解因式,熟练利用平方差公式是解题关键.二、填空题(每小题3分,共24分)11、1【分析】根据(、均为正实数),对代数式进行化简求最小值.【详解】解:由题中结论可得即:当时,有最小值为1,故答案为:1.【点睛】准确理解阅读内容,灵活运用题中结论,求出代数式的最小值.12、【分析】由翻折的性质得到AF=AD=13,在Rt△ABF中利用勾股定理求出BF的长,进而求出CF的长,再根据勾股定理可求EC的长.【详解】解:∵四边形ABCD是长方形,∴∠B=90°,∵△AEF是由△ADE翻折,∴AD=AF=13,DE=EF,在Rt△ABF中,AF=13,AB=5,∴BF===12,∴CF=BC﹣BF=13﹣12=1.∵EF2=EC2+CF2,∴EF2=(5﹣EF)2+1,∴EF=,故答案为:.【点睛】本题考查勾股定理的综合应用、图形的翻折,解题的关键是熟练掌握勾股定理和翻折的性质.13、1【分析】根据正比例函数的定义,m-1=0,从而求解.【详解】解:根据题意得:m-1=0,解得:m=1,故答案为1.【点睛】本题主要考查了正比例函数的定义,形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.14、角的内部到角两边距离相等的点在角的角平分线上【分析】根据角平分线判定定理即可得到结果.【详解】解:∵PM⊥OA,PN⊥OB,PM=PN∴OP平分∠AOB(在角的内部,到角的两边距离相等的点在这个角的平分线上)故答案为:角的内部到角两边距离相等的点在角的角平分线上.【点睛】本题考查角平分线判定定理,掌握角平分线判定定理的内容是解题的关键.15、或【分析】等腰三角形的一个外角等于,则等腰三角形的一个内角为72°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.【详解】∵一个外角为,∴三角形的一个内角为72°,当72°为顶角时,其他两角都为、,当72°为底角时,其他两角为72°、36°,所以等腰三角形的顶角为或.故答案为:或【点睛】本题考查了等腰三角形的性质,及三角形内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.16、②【分析】根据一次函数的图象与性质一一判断选择即可.【详解】解:①当时,随的增大而增大,故错误;②当时,函数图象经过一、二、三象限,正确;③将点代入解析式可得,不成立,函数图象不经过点,故错误;④将直线向下移动个单位长度后所得直线表达式为,故错误.故答案为:②.【点睛】本题考查了一次函数的图象与性质,熟练掌握该知识点是解答关键.17、(-2,-15)【解析】分析:先利用多项式的乘法展开再根据对应项系数相等确定出b、c的值,然后根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.详解:∵(x+5)(x−3)=x2+2x−15,∴b=2,c=−15,∴点P的坐标为(2,−15),∴点P(2,−15)关于y轴对称点的坐标是(−2,−15).故答案为(−2,−15).点睛::考查关于y轴对称的点的坐标特征,纵坐标不变,横坐标互为相反数.18、m>−1【分析】两方程相加可得x+y=m+1,根据题意得出关于m的不等式,解之可得.【详解】解:,①+②得:3x+3y=3m+3,则x+y=m+1,∵,∴m+1>0,解得:m>−1,故答案为:m>−1.【点睛】本题考查的是解二元一次方程组以及解一元一次不等式,整体求出x+y=m+1是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)①AB=AC+CD;②AC+AB=CD,证明见解析.【分析】(1)首先得出△AED≌△ACD(SAS),即可得出∠B=∠BDE=45°,求出BE=DE=CD,进而得出答案;(2)①首先得出△AED≌△ACD(SAS),即可得出∠B=∠BDE,求出BE=DE=CD,进而得出答案;②首先得出△AED≌△ACD(SAS),即可得出∠B=∠EDC,求出BE=DE=CD,进而得出答案.【详解】解:(1)∵AD为∠ABC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,∵AE=AC,∠EAD=∠CAD,AD=AD,∴△AED≌△ACD(SAS),∴ED=CD,∠C=∠AED=90°,∵∠ACB=2∠B,∠C=90°,∴∠B=45°,∴∠BDE=45°,∴BE=ED=CD,∴AB=AE+BE=AC+CD;(2)①AB=AC+CD.理由:在AB上截取AE=AC,连接DE,∵AD为∠ABC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,∵AE=AC,∠EAD=∠CAD,AD=AD,∴△AED≌△ACD(SAS),∴ED=CD,∠C=∠AED,∵∠ACB=2∠B,∴∠AED=2∠B,∵∠B+∠BDE=∠AED,∴∠B=∠BDE,∴BE=ED=CD,∴AB=AE+BE=AC+CD;②AC+AB=CD.理由:在射线BA上截取AE=AC,连接DE,∵AD为∠EAC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,∵AE=AC,∠EAD=∠CAD,AD=AD,∴△AED≌△ACD(SAS),∴ED=CD,∠ACD=∠AED,∵∠ACB=2∠B,∴设∠B=x,则∠ACB=2x,∴∠EAC=3x,∴∠EAD=∠CAD=1.5x,∵∠ADC+∠CAD=∠ACB=2x,∴∠ADC=0.5x,∴∠EDC=x,∴∠B=∠EDC,∴BE=ED=CD,∴AB+AE=BE=AC+AB=CD.【点睛】此题主要考查了全等三角形的判定与性质以及三角形外角的性质等知识,利用已知得出△AED≌△ACD是解题关键.20、见解析【分析】由AB=AD可得出∠ADB=∠ABD,由AB∥DC,利用“两直线平行,内错角相等”可找出∠ABD=∠BDC,结合∠ADB=∠ABD可得出∠ADB=∠BDC,进而可证出BD平分∠ADC.【详解】证明:∵AB=AD,∴∠ADB=∠ABD,又∵AB∥DC,∴∠ABD=∠BDC,∴∠ADB=∠BDC,即BD平分∠ADC.【点睛】本题考查了等腰三角形的性质,平行线的性质,角平分线的判定,掌握等腰三角形的性质是解题的关键.21、(1)见解析;(2)【解析】试题分析:(1)由AD为△ABC的角平分线,得到DE=DF,推出∠AEF和∠AFE相等,得到AE=AF,即可推出结论;(2)由已知推出∠EAD=30°,得到AD=2DE,在△DEO中,由∠DEO=30°推出DE=2DO,即可推出结论.试题解析:(1)∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,∴∠DEF=∠DFE,∴∠AEF=∠AFE,∴AE=AF,∴点A、D都在EF的垂直平分线上,∴AD垂直平分EF.(2),理由:∵∠BAC=60°,AD平分∠BAC,∴∠EAD=30°,∴AD=2DE,∠EDA=60°,∵AD⊥EF,∴∠EOD=90°,∴∠DEO=30°∴DE=2DO,∴AD=4DO,∴.【点睛】本题主要考查了角平分线的性质,线段垂直平分线的性质,含30°角的直角三角形的性质等知识点,解此题的关键是(1)证AE=AF和DE=DF;(2)证AD=2DE和DE=2DO.22、(1)见解析;(2)见解析【分析】(1)首先根据角平分线的性质得出,然后通过线段中点和等量代换得出,最后根据角平分线的性质定理的逆定理得出结论即可;(2)首先根据HL证明,得出,同理可得,最后通过等量代换即可得出结论.【详解】(1)如图,过点O作于点E,OA平分∠BAC,∠ABD=90°,,.∵点O为BD的中点,,.∵∠ABD=90°,,OC平分∠ACD;(2)在和中,,,同理可得,.,.【点睛】本题主要考查角平分线的性质定理及逆定理,直角三角形的判定及性质,掌握这些性质及判定是解题的关键.23、-3当=1时,原式=-2【分析】先将分式进行约分,再将除法转化为乘法进行约分,代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论