2023年初中数学8年级上册同步压轴题 专题02 全等三角形中的六种模型梳理(教师版含解析)_第1页
2023年初中数学8年级上册同步压轴题 专题02 全等三角形中的六种模型梳理(教师版含解析)_第2页
2023年初中数学8年级上册同步压轴题 专题02 全等三角形中的六种模型梳理(教师版含解析)_第3页
2023年初中数学8年级上册同步压轴题 专题02 全等三角形中的六种模型梳理(教师版含解析)_第4页
2023年初中数学8年级上册同步压轴题 专题02 全等三角形中的六种模型梳理(教师版含解析)_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题02全等三角形中的六种模型梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。类型一、倍长中线模型中线倍长法:将中点处的线段延长一倍。目的:=1\*GB3①构造出一组全等三角形;=2\*GB3②构造出一组平行线。将分散的条件集中到一个三角形中去。例1.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.【探究与发现】如图1,延长△ABC的边BC到D,使DC=BC,过D作DE∥AB交AC延长线于点E,求证:△ABC≌△EDC.【理解与应用】如图2,已知在△ABC中,点E在边BC上且∠CAE=∠B,点E是CD的中点,若AD平分∠BAE.(1)求证:AC=BD;(2)若BD=3,AD=5,AE=x,求x的取值范围.【答案】[探究与发现]见解析;[理解与应用](1)见解析;(2)1<x<4【详解】解:[探究与发现]证明:∵DE∥AB,∴∠B=∠D,又∵BC=DC,∠ACB=∠ECD,∴△ABC≌△EDC(ASA);[理解与应用](1)证明:如图2中,延长AE到F,使EF=EA,连接DF,∵点E是CD的中点,∴ED=EC,在△DEF与△CEA中,,∴△DEF≌△CEA(SAS),∴AC=FD,∴∠AFD=∠CAE,∵∠CAE=∠B,∴∠AFD=∠B,∵AD平分∠BAE,∴∠BAD=∠FAD,在△ABD与△AFD中,,∴△ABD≌△AFD(AAS),∴BD=FD,∴AC=BD;(2)解:由(1)得:AF=2AE=2x,△ABD≌△AFD,∴AB=AF=2x,∵BD=3,AD=5,在△ABD中,由三角形的三边关系得:AD-BD<AB<AD+BD,即5-3<2x<5+3,解得:1<x<4,即x的取值范围是1<x<4.【变式训练1】如图1,在中,是边的中线,交延长线于点,.(1)求证;(2)如图2,平分交于点,交于点,若,,求的值.【答案】(1)见解析;(2)【详解】(1)如图1所示,延长至点,使,在与中,,,,,,在与中,,,,;(2)如图所示,,,平分,,,,,,作,在与中,,,,,在与中,,,,,,设,,,.【变式训练2】(1)如图1,已知中,AD是中线,求证:;(2)如图2,在中,D,E是BC的三等分点,求证:;(3)如图3,在中,D,E在边BC上,且.求证:.【答案】(1)见解析;(2)见解析;(3)见解析【详解】证:(1)如图所示,延长AD至P点,使得AD=PD,连接CP,∵AD是△ABC的中线,∴D为BC的中点,BD=CD,在△ABD与△PCD中,,∴△ABD≌△PCD(SAS),∴AB=CP,在△APC中,由三边关系可得AC+PC>AP,∴;(2)如图所示,取DE中点H,连接AH并延长至Q点,使得AH=QH,连接QE和QC,∵H为DE中点,D、E为BC三等分点,∴DH=EH,BD=DE=CE,∴DH=CH,在△ABH和△QCH中,,∴△ABH≌△QCH(SAS),同理可得:△ADH≌△QEH,∴AB=CQ,AD=EQ,此时,延长AE,交CQ于K点,∵AC+CQ=AC+CK+QK,AC+CK>AK,∴AC+CQ>AK+QK,又∵AK+QK=AE+EK+QK,EK+QK>QE,∴AK+QK>AE+QE,∴AC+CQ>AK+QK>AE+QE,∵AB=CQ,AD=EQ,∴;(3)如图所示,取DE中点M,连接AM并延长至N点,使得AM=NM,连接NE,CE,∵M为DE中点,∴DM=EM,∵BD=CE,∴BM=CM,在△ABM和△NCM中,,∴△ABM≌△NCM(SAS),同理可证△ADM≌△NEM,∴AB=NC,AD=NE,此时,延长AE,交CN于T点,∵AC+CN=AC+CT+NT,AC+CT>AT,∴AC+CN>AT+NT,又∵AT+NT=AE+ET+NT,ET+NT>NE,∴AT+NT>AE+NE,∴AC+CN>AT+NT>AE+NE,∵AB=NC,AD=NE,∴.【变式训练3】在中,点为边中点,直线绕顶点旋转,直线于点.直线于点,连接,.(1)如图1,若点,在直线的异侧,延长交于点.求证:.(2)若直线绕点旋转到图2的位置时,点,在直线的同侧,其它条件不变,此时,,,求的长度.(3)若过点作直线于点.试探究线段、和的关系.【答案】(1)见解析;(2);(3)线段、和的位置关系为,数量关系为或或【详解】(1)证明:如图1,直线于点,直线于点,,,,又为边中点,,在和中,,,.(2)解:如图2,延长与的延长线相交于点,直线于点,直线于点,,,,,又为中点,,又,∴在和中,,,,,,∵,,,,,,,.(3)位置关系:,数量关系:分四种情况讨论∵直线于点.直线于点,直线于点,∴,①如图3,当直线与线段交于一点时,由(1)可知,,即,,,,∵,.②当直线与线段交于一点时,如图,延长交的延长线于点.直线于点,直线于点,,,,又为边中点,,在和中,,,.,即,,,,∵,.③如图4,当直线与线段的延长线交于一点时.由(2)得:,,,∴,即,.④当直线与线段的延长线交于一点时,如图,延长交的延长线于点.直线于点,直线于点,,,,,又为中点,,又,∴在和中,,,,,∴,即,.综上所述,线段、和的位置关系为,数量关系为或或.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)例.在等边三角形ABC的两边AB、AC所在直线上分别有两点M、N,P为△ABC外一点,且∠MPN=60°,∠BPC=120°,BP=CP.探究:当点M、N分别在直线AB、AC上移动时,BM,NC,MN之间的数量关系.(1)如图①,当点M、N在边AB、AC上,且PM=PN时,试说明MN=BM+CN.(2)如图②,当点M、N在边AB、AC上,且PM≠PN时,MN=BM+CN还成立吗?答:.(请在空格内填“一定成立”“不一定成立”或“一定不成立”).(3)如图③,当点M、N分别在边AB、CA的延长线上时,请直接写出BM,NC,MN之间的数量关系.

【答案】(1)见解析;(2)一定成立;(3)MN=NC﹣BM【解析】(1)证明:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵∠BPC=120°,BP=CP,∴∠PBC=∠PCB=×(180°﹣120°)=30°,∴∠PBM=∠PCN=90°,在Rt△PBM和Rt△PCN中,,∴Rt△PBM≌Rt△PCN(HL),∴∠BPM=∠CPN=30°,∵∠MPN=60°,PM=PN,∴△PMN为等边三角形,∴PM=PN=MN,在Rt△PBM中,∠BPM=30°,∴BM=PM,同理可得,CN=PN,∴BM+CN=MN.(2)解:一定成立,理由如下:延长AC至H,使CH=BM,连接PH,如图所示,由(1)可知:∠PBM=∠PCN=90°,∴∠PCH=90°,∴∠PBM=∠PCH,在△PBM和△PCH中,,∴△PBM≌△PCH(SAS),∴PM=PH,∠BPM=∠CPH,∵∠BPM+∠CPN=60°,∴∠CPN+∠CPH=60°,∴∠MPN=∠HPN,在△MPN和△HPN中,,∴△MPN≌△HPN(SAS),∴MN=HN=BM+CN,故答案为:一定成立.(3)解:在AC上截取CK=BM,连接PK,如图所示,在△PBM和△PCK中,,∴△PBM≌△PCK(SAS),∴PM=PK,∠BPM=∠CPK,∵∠BPM+∠BPN=60°,∴∠CPK+∠BPN=60°,∴∠KPN=60°,∴∠MPN=∠KPN,在△MPN和△KPN中,,∴△MPN≌△KPN(SAS),∴MN=KN,∵KN=NC﹣CK=NC﹣BM,∴MN=NC﹣BM.【变式训练1】如图,在四边形中,,点E、F分别在直线、上,且.(1)当点E、F分别在边、上时(如图1),请说明的理由.(2)当点E、F分别在边、延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出、、之间的数量关系,并说明理由.【答案】(1)见解析;(2)不成立,,见解析【解析】(1)EF=BE+DF,理由:延长EB至G,使BG=DF,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABG=180°,∴∠ADC=∠ABG,在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵∠EAF=∠BAD,∴∠BAE+∠DAF=∠BAE+∠BAG=∠EAF,即∠EAG=∠EAF,在△EAG和△EAF中,,∴△EAG≌△EAF(SAS),∴GE=EF,∴EF=BE+DF;(2)(1)中结论不成立,EF=BE﹣FD,在BE上截取BM=DF,连接AM,∵∠ABC+∠ADC=180°,∠ADC+∠ADF=180°,∴∠ABC=∠ADF,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∵∠BAM+∠MAD=∠DAF+∠MAD,∴∠BAD=∠MAF,∵∠EAF=∠BAD,∴∠EAF=∠MAF,∴∠EAF=∠EAM,在△AME和△AFE中,,∴△AME≌△AFE(SAS),∴ME=EF,∴ME=BE﹣BM=BE﹣DF,∴EF=BE﹣FD.【变式训练2】(1)阅读理解:问题:如图1,在四边形中,对角线平分,.求证:.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形中,,,过点D作,垂足为点E,请直接写出线段、、之间的数量关系.【答案】(1)证明见解析;(2);理由见解析;(3).【详解】解:(1)方法1:在上截,连接,如图.平分,.在和中,,,,.,..,.方法2:延长到点,使得,连接,如图.平分,.在和中,,.,.,.,,.(2)、、之间的数量关系为:.(或者:,).延长到点,使,连接,如图2所示.由(1)可知,.为等边三角形.,.,..,为等边三角形.,.,,即.在和中,,.,,.(3),,之间的数量关系为:.(或者:,)解:连接,过点作于,如图3所示.,..在和中,,,,.在和中,,.,,.【变式训练3】在中,BE,CD为的角平分线,BE,CD交于点F.(1)求证:;(2)已知.①如图1,若,,求CE的长;②如图2,若,求的大小.【答案】(1)证明见解析;(2)2.5;(3)100°.【解析】解:(1)、分别是与的角平分线,,,,(2)如解(2)图,在BC上取一点G使BG=BD,由(1)得,,,∴,在与中,,∴(SAS)∴,∴,∴,∴在与中,,,,,;∵,,∴(3)如解(3)图,延长BA到P,使AP=FC,,∴,在与中,,∴(SAS)∴,,∴,又∵,∴,又∵,∴,∴,,∴,类型三、做平行线证明全等例1.如图所示:是等边三角形,、分别是及延长线上的一点,且,连接交于点.求让:【答案】见详解【详解】过点D作DE∥AC,交BC于点E,∵是等边三角形,∴∠B=∠ACB=60°,∵DE∥AC,∴∠DEB=∠ACB=60°,∠MDE=∠MEC,∴是等边三角形,∴BD=DE,∵,∴DE=CE,又∵∠EMD=∠CME,∴∆EMD≅∆CME,∴.【变式训练1】P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.【答案】(1)证明见解析;(2)DE=3.【详解】(1)如图1所示,点P作PF∥BC交AC于点F.∵△ABC是等边三角形,∴△APF也是等边三角形,AP=PF=AF=CQ.∵PF∥BC,∴∠PFD=∠DCQ.在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF.∵PE⊥AC,∴AE=EF.∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD.∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DEAC.∵AC=6,∴DE=3.

【变式训练2】已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M.请探究:(1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论.(2)如图(2),当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;【答案】(1)DM=EM.理由见详解;(2)成立,理由见详解;(3)MD=ME.【解析】(1)解:DM=EM;证明:过点E作EF//AB交BC于点F,∵AB=AC,∴∠ABC=∠C;又∵EF//AB,∴∠ABC=∠EFC,∴∠EFC=∠C,∴EF=EC.又∵BD=EC,∴EF=BD.又∵EF//AB,∴∠ADM=∠MEF.在△DBM和△EFM中,∴△DBM≌△EFM,∴DM=EM.(2)解:成立;证明:过点E作EF//AB交CB的延长线于点F,∵AB=AC,∴∠ABC=∠C;又∵EF//AB,∴∠ABC=∠EFC,∴∠EFC=∠C,∴EF=EC.又∵BD=EC,∴EF=BD.又∵EF//AB,∴∠ADM=∠MEF.在△DBM和△EFM中∴△DBM≌△EFM;∴DM=EM;类型四、旋转模型例.如图1,,,,、相交于点,连接.(1)求证:,并用含的式子表示的度数;(2)当时,取,的中点分别为点、,连接,,,如图2,判断的形状,并加以证明.【答案】(1)证明见解析;;(2)为等腰直角三角形;证明见解析.【详解】证明:(1)如图1,,,,在和中,,,;,,中,,,,中,;即;(2)为等腰直角三角形.证明:如图2,由(1)可得,,,的中点分别为点、,,,,在和中,,,,且,又,,,为等腰直角三角形.【变式训练1】四边形是由等边和顶角为的等腰排成,将一个角顶点放在处,将角绕点旋转,该交两边分别交直线、于、,交直线于、两点.(1)当、都在线段上时(如图1),请证明:;(2)当点在边的延长线上时(如图2),请你写出线段,和之间的数量关系,并证明你的结论;(3)在(1)的条件下,若,,请直接写出的长为.【答案】(1)证明见解析;(2).证明见解析;(3).【解析】解:(1)证明:把△DBM绕点D逆时针旋转120°得到△DAQ,则DM=DQ,AQ=BM,∠ADQ=∠BDM,∠QAD=∠CBD=90°,∴点Q在直线CA上,∵∠QDN=∠ADQ+∠ADN=∠BDM+∠ADN=∠ABD-∠MDN=120°-60°=60°,∴∠QDN=∠MDN=60°,∵在△MND和△QND中,,∴△MND≌△QND(SAS),∴MN=QN,∵QN=AQ+AN=BM+AN,∴BM+AN=MN;(2):.理由如下:如图,把△DAN绕点D顺时针旋转120°得到△DBP,则DN=DP,AN=BP,∵∠DAN=∠DBP=90°,∴点P在BM上,∵∠MDP=∠ADB-∠ADM-∠BDP=120°-∠ADM-∠ADN=120°-∠MDN=120°-60°=60°,∴∠MDP=∠MDN=60°,∵在△MND和△MPD中,,∴△MND≌△MPD(SAS),∴MN=MP,∵BM=MP+BP,∴MN+AN=BM;(3)如图,过点M作MH∥AC交AB于G,交DN于H,∵△ABC是等边三角形,∴△BMG是等边三角形,∴BM=MG=BG,根据(1)△MND≌△QND可得∠QND=∠MND,根据MH∥AC可得∠QND=∠MHN,∴∠MND=∠MHN,∴MN=MH,∴GH=MH-MG=MN-BM=AN,即AN=GH,∵在△ANE和△GHE中,,∴△ANE≌△GHE(AAS),∴AE=EG=2.1,∵AC=7,∴AB=AC=7,∴BG=AB-AE-EG=7-2.1-2.1=2.8,∴BM=BG=2.8.故答案为:2.8【变式训练2】(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.则:①∠AEB的度数为°;②线段AD、BE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AD=a,AE=b,AB=c,求a、b、c之间的数量关系.(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中,当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.【答案】(1)①60;②AD=BE;(2)a2+b2=c2;(3)60°或120°【详解】解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=60°,故答案为:60;②∵△ACD≌△BCE,∴AD=BE,故答案为:AD=BE;(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴BE=AD,∠ADC=∠BEC,∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=90°,∴AD2+AE2=AB2,∵AD=a,AE=b,AB=c,∴a2+b2=c2;(3)如图3,由(1)知△ACD≌△BCE,∴∠CAD=∠CBE,∵∠CAB=∠CBA=60°,∴∠OAB+∠OBA=120°,∴∠AOE=180°-120°=60°,如图4,同理求得∠AOB=60°,∴∠AOE=120°,∴∠AOE的度数是60°或120°.【变式训练3】如图1,在中,,,点,分别在边,上,,连接,点,,分别为,,的中点.(1)观察猜想:图1中,线段与的数量关系是______,位置关系是______.(2)探究证明:把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由;(3)拓展延伸:把绕点在平面内自由旋转,若,,请直接写出面积的最大值.【答案】(1)、;(2)等腰直角三角形,证明见解析;(3)【详解】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由如下:由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×49=.类型五、手拉手模型例.在等边中,点D在AB上,点E在BC上,将线段DE绕点D逆时针旋转60°得到线段DF,连接CF.(1)如图(1),点D是AB的中点,点E与点C重合,连接AF.若,求AF的长;(2)如图(2),点G在AC上且,求证:;(3)如图(3),,,连接AF.过点F作AF的垂线交AC于点P,连接BP、DP.将沿着BP翻折得到,连接QC.当的周长最小时,直接写出的面积.【答案】(1)AF=3;(2)见解析;(3),详见解析【解析】(1)解:∵△ABC为等边三角形,∴BC=AC,∠BCA=60°,由旋转知,∠CDF=60°,CD=CF,∴△DCF为等边三角形,∴CD=CF,∠DCF=60°,∴∠DCB=∠ACF,∴△BCD≌△ACF,∴AF=BD,∵D为AB中点,AB=6,∴BD=3,∴AF=3.(2)解:将CF绕C顺时针旋转60°得CH,连接CH,FH,EF,EH,CD,在AC上截取AP=BE,连接DP,设CD交EH于M,如图所示,由旋转知,△DEF、△CFH为等边三角形,∴DF=EF,CF=FH,∠DFE=∠CFH=60°,∴∠DFC=∠EFH,∴△DCF≌△BHF,∴EH=CD,∠DCF=∠EHF,由三角形内角和知,∠HMC+∠EHF=∠DCF+∠HFC,∴∠HMC=∠HFC=60°,∴∠DCE+∠HEC=60°,∵∠DCP+∠DCE=60°,

∴∠CEH=∠DCP,∵AC=BC,AP=BE,∴CP=CE,∴△ECH≌△CPD,∴CH=DP,∠DPC=∠HCE,又∠HCE=60°+∠2,∴∠DPC=60°+∠2,由∠1+∠FCG=∠2+∠FCG=60°,知∠1=∠2,又∠AGD=60°+∠1,∴∠AGD=∠DPG,

∴DP=DG,∵CH=CF,∴CF=DG.(3):过D作DH⊥CB于H,连接EF,如图所示,∵△ABC为等边三角形,∴∠DBH=60°,∠BDH=30°,∴BD=2BH,DH=,∵BD=2CE,∴BH=CE,设BH=CE=x,则BD=2x,EH=6-2x,AD=6-2x,由旋转知,△DEF为等边三角形,∠EDF=60°,∴∠1+∠3=90°,DE=DF,又∠1+∠2=90°,∴∠2=∠3,∴△ADF≌△HED,∴∠DAF=∠DHE=90°,∠PAF=30°,AF=DH=,∵∠AFP=90°,∴PF=x,AP=2x,过P作PM⊥AD于M,则AM=x,DM=6-3x,PM=,在Rt△PDM中,由勾股定理得:PD=,故△ADP周长=AD+AP+PD=6-2x+2x+=6+,∴当x=时,周长取最小值,最小值为9,此时DP=3,∴BD=AP=3,即D为AB中点,P为AC中点,∴直线BP是等边△ABC对称轴,如图所示,△BDP沿BP折叠后,Q点落在BC中点处,则△PCQ面积=×△ABC面积=××=.【变式训练1】△ACB和△DCE是共顶点C的两个大小不一样的等边三角形.(1)问题发现:如图1,若点A,D,E在同一直线上,连接AE,BE.①求证:△ACD≌△BCE;②求∠AEB的度数.(2)类比探究:如图2,点B、D、E在同一直线上,连接AE,AD,BE,CM为△DCE中DE边上的高,请求∠ADB的度数及线段DB,AD,DM之间的数量关系,并说明理由.(3)拓展延伸:如图3,若设AD(或其延长线)与BE的所夹锐角为α,则你认为α为多少度,并证明.【答案】(1)①见解析;②∠AEB=60°;(2)∠ADB=60°,2DM+BD=AD,理由见解析;(3)α=60°,证明见解析【解析】(1)①证明:∵△ACB和△DCE是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°-∠DCB=∠BCE,∴△ACD≌△BCE(SAS);②∵△ACD≌△BCE,∴∠ADC=∠BEC=180°-∠CDE=120°,又∵∠CED=60°,∴∠AEB=60°;(2)解:∠ADB=60°,2DM+BD=AD,理由如下;∵AC=BC,CD=CE,∠ACD=60°+∠DCB=∠BCE,∴△ACD≌△BCE(SAS),∴∠CDA=∠CED=60°;∵∠ADB+∠CDA=∠DCE+∠CED,∴∠ADB=60°;又∵CM⊥BE,且△CDE为等边三角形,∴DE=2DM,∴2DM+BD=BE=AD;(3)解:α=60°,理由如下:同理可证△ACD≌△BCE,∴∠BEC=∠ADC,∴∠CDF+∠CEF=180°,∴∠ECD+∠DFE=180°,而α+∠DFE=180°,∴α=∠ECD=60°.【变式训练2】(1)如图1,锐角△ABC中,分别以AB、AC为边向外作等腰直角△ABE和等腰直角△ACD,使AE=AB,AD=AC,∠BAE=∠CAD=90°,连接BD,CE,试猜想BD与CE的大小关系,不需要证明.【深入探究】(2)如图2,四边形ABCD中,AB=5,BC=2,∠ABC=∠ACD=∠ADC=45°,求BD2的值;甲同学受到第一问的启发构造了如图所示的一个和△ABD全等的三角形,将BD进行转化再计算,请你准确的叙述辅助线的作法,再计算;【变式思考】(3)如图3,四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,AD=6,BD=10,则CD=.【答案】(1)BD=CE;(2)BD2=54;(3)8【详解】解:(1)BD=CE.理由是:∵∠BAE=∠CAD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△EAC和△BAD中,,∴△EAC≌△BAD,∴BD=CE;(2)如图2,在△ABC的外部,以A为直角顶点作等腰直角△BAE,使∠BAE=90°,AE=AB,连接EA、EB、EC.∵∠ACD=∠ADC=45°,∴AC=AD,∠CAD=90°,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△EAC和△BAD中,,∴△EAC≌△BAD,∴BD=CE.∵AE=AB=5,∴BE=,∠ABE=∠AEB=45°,又∵∠ABC=45°,

∴∠ABC+∠ABE=45°+45°=90°,∴,∴.(3)如图,∵AB=BC,∠ABC=60°,∴△ABC是等边三角形,把△ACD绕点C逆时针旋转60°得到△BCE,连接DE,则BE=AD,△CDE是等边三角形,∴DE=CD,∠CED=60°,∵∠ADC=30°,∴∠BED=30°+60°=90°,在Rt△BDE中,DE===8,

∴CD=DE=8.【变式训练3】(1)问题发现:如图1,和均为等腰直角三角形,,连接,,点、、在同一条直线上,则的度数为__________,线段、之间的数量关系__________;(2)拓展探究:如图2,和均为等腰直角三角形,,连接,,点、、不在一条直线上,请判断线段、之间的数量关系和位置关系,并说明理由.(3)解决问题:如图3,和均为等腰三角形,,则直线和的夹角为__________.(请用含的式子表示)【答案】(1)90°,AD=BE;(2)AD=BE,AD⊥BE;(3)【详解】(1)∵和均为等腰直角三角形,,∴,,∠CDE=45°∴∠CDA=135°∵∠ACB−∠DCB=∠DCE−∠DCB,∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴∠BEC=∠ADC=135°,AD=BE,∴∠AEB=90°故答案为:90°,AD=BEAD=BE,AD⊥BE,理由如下,同理可得△ACD≌△BCE,则AD=BE,延长交于点F,设∠FAB=α,则∠CAD=∠CBE=45°-α∴∠ABE=45°+45°-α=90°-α∴∠AFB=180°-∠FAB-∠ABE=180°-α-(90°-α)=90°∴AD⊥BE(3)如图,延长BE交AD于点G,∵和均为等腰三角形,∴,,∵∠ACB=∠DCE=α,∵∠ACB+∠ACE=∠DCE+∠ACE,∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD∵,∴∠CBA=∠CAB=∴∠GAB+∠GBA=,∴∠AGB=180°-(∠GAB+∠GBA),即直线和的夹角为.故答案为:.类型六、一线三角模型例.在中,,,直线MN经过点C且于D,于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①≌;②;(2)当直线MN烧点C旋转到图2的位置时,求证:;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)①证明见解析;②证明见解析;(2)证明见解析(3)(或者对其恒等变形得到,),证明见解析【解析】(1)解:①,,,,,,在和中,;②,,,;(2)证明:,,,,在和中,;,,;(3)证明:当旋转到题图(3)的位置时,,,所满足的等量关系是:或或.理由如下:,,,,在和中,,,,(或者对其恒等变形得到或).【变式训练1】【问题解决】(1)已知△ABC中,AB=AC,D,A,E三点都在直线l上,且有∠BDA=∠AEC=∠BAC.如图①,当∠BAC=90°时,线段DE,BD,CE的数量关系为:______________;【类比探究】(2)如图②,在(1)的条件下,当0°<∠BAC<180°时,线段DE,BD,CE的数量关系是否变化,若不变,请证明:若变化,写出它们的关系式;【拓展应用】(3)如图③,AC=BC,∠ACB=90°,点C的坐标为(-2,0),点B的坐标为(1,2),请求出点A的坐标.【答案】(1)DE=BD+CE;(2)DE=BD+CE的数量关系不变,理由见解析;(3)(﹣4,3)【解析】解:(1)∵∠BAC=90°,∴∠BDA=∠AEC=∠BAC=90°,∴∠ABD+∠BAD=90°,∠CAE+∠BAD=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE;(2)DE=BD+CE的数量关系不变,理由如下:∵∠BAE是△ABD的一个外角,∴∠BAE=∠ADB+∠ABD,∵∠BDA=∠BAC,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE;(3)过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,∵点C的坐标为(﹣2,0),点B的坐标为(1,2),∴OC=2,ON=1,BN=2,∴CN=3,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论