下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年安徽省淮北市高三单招数学自考测试卷二(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.抛物线y²=4x的焦点为()
A.(1,0)B.(2,0)C.(3,0)D.(4,0)
2.过点P(2,-1)且与直线x+y-2=0平行的直线方程是()
A.x-y-1=0B.x+y+1=0C.x-y+1=0D.x+y-1=0
3.已知cosα=1/3,且α是第四象限的角,则sin(a+2Π)=()
A.-1/3B.-2/3C.-2√2/3D.2/3
4.已知顶点在原点,准线方程x=4的抛物线标准方程()
A.y²=-16xB.y²=8xC.y²=16xD.y²=-8x
5.已知平行四边形的三个顶点A.B.C的坐标分别是(−2,1),(−1,3),(3,4),则顶点D的坐标是()
A.(2,1)B.(2,2)C.(1,2)D.(1,3)
6.过点P(1,-1)垂直于X轴的直线方程为()
A.x+1=0B.x-1=0C.y+1=0D.y-1=0
7.某射击运动员的第一次打靶成绩为8,8,9,8,7第二次打靶成绩为7,8,9,9,7,则该名运动员打靶成绩的稳定性为()
A.一样稳定B.第一次稳定C.第二次稳定D.无法确定
8.X>3是X>4的()
A.充分条件B.必要条件C.充要条件D.即不充分也不必要条件
9.-240°是()
A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角
10.下列函数中既是奇函数又是增函数的是()
A.y=2xB.y=2xC.y=x²/2D.y=-x/3
二、填空题(4题)11.已知sin(a+b)cosa-cos(a+b)sina=-m,且b是第二象限的角,则cosb=________。
12.若向量a=(1,-1),b=(2,-1),则|3a-b|=________。
13.函数y=3sin2x-1的最小值是________。
14.过点(2,0)且与圆(x-1)²+(y+1)²=2相切的直线方程为________。
三、计算题(2题)15.已知sinα=1/3,则cos2α=________。
16.解下列不等式x²>7x-6
参考答案
1.A抛物线方程为y²=2px(p>0),焦点为(P/2,0),2p=4,p=2c,p/2=1。考点:抛物线焦点
2.D可利用直线平行的关系求解,与直线Ax+By+C=0平行的直线方程可表示为:Ax+By+D=0.设所求直线方程为x+y+D=0,代入P(2,1)解得D=-1,所以所求的直线方程为:x+y-1=0,故选D.考点:直线方程求解.
3.C
4.A
5.B根据平行四边形的性质,对边平行且相等,所以对边的向量相等,向量AB=向量DC,所以(-1,3)-(-2,1)=(3,4)-(x,y)解得D点坐标(x,y)=(2,2),故选B
6.B
7.B
8.B
9.B
10.Ay=2x既是增函数又是奇函数;y=1/x既是减函数又是奇函数;y=1/2x²是偶函数,且在(-∞,0)上为减函数,在[0,+∞)上为增函数;y=-x/3既是减函数又是奇函数,故选A.考点:函数的奇偶性.感悟提高:对常见的一次函数、二次函数、反比例函数,可根据图像的特点判断其单调性;对于函数的奇偶性,则可依据其定义来判断。首先看函数的定义域是否关于原点对称,如果定义域不关于原点对称,则函数不具有奇偶性;如果定义域关于原点对称,再判断f(-x)=f(x)(偶函数);f(-x)=-f(x)(奇函数)
11.-√(1-m²)
12.√5
13.-4
14.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工作实践心得体会范文-文档
- 大学境内非学历教育培训项目合同
- 2025申报纳税服务合同
- 二零二五年度环保型工厂整体资产转让合同3篇
- 2025年度农村土地承包经营权租赁与农业科技成果转化合同
- 2025年度分手后共同债务重组与和解协议3篇
- 2025年度风力发电项目承包租赁合同3篇
- 二零二五年度文化创意产业借款合同范本3篇
- 二零二五年度人工智能产业合作合同模板3篇
- 2025年度建筑工程施工安全培训三方合作协议3篇
- 200句搞定中考英语词汇
- 2024年型材切割机市场需求分析报告
- 二型糖尿病足
- 汽车文化教案(汽车发展史)
- 土木工程认识实习报告
- 服务区安全生产培训
- 儿童颅内肿瘤的诊断与手术治疗
- IATA区域的划分(TC1区)
- 医院对账平台技术方案
- 山茶油知识普及课件
- 图形创意共生图形实训+讲授
评论
0/150
提交评论