2023-2024学年山东省青岛市五校八上数学期末质量跟踪监视试题含解析_第1页
2023-2024学年山东省青岛市五校八上数学期末质量跟踪监视试题含解析_第2页
2023-2024学年山东省青岛市五校八上数学期末质量跟踪监视试题含解析_第3页
2023-2024学年山东省青岛市五校八上数学期末质量跟踪监视试题含解析_第4页
2023-2024学年山东省青岛市五校八上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山东省青岛市五校八上数学期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.估计的值约为()A.2.73 B.1.73 C.﹣1.73 D.﹣2.732.下列说法中错误的是()A.全等三角形的对应边相等 B.全等三角形的面积相等C.全等三角形的对应角相等 D.全等三角形的角平分线相等3.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12,10,6,8,则第5组的百分比是()A.10%B.20%C.30%D.40%4.如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为()A. B. C. D.5.计算的结果,与下列哪一个式子相同?()A. B. C. D.6.若是完全平方式,则m的值是()A.-1 B.7 C.7或-1 D.5或17.因式分解x﹣4x3的最后结果是()A.x(1﹣2x)2 B.x(2x﹣1)(2x+1) C.x(1﹣2x)(2x+1) D.x(1﹣4x2)8.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1) D.x2+y2=(x﹣y)2+2x9.下列图形是轴对称图形的是()A. B. C. D.10.若把分式的x和y都扩大5倍,则分式的值()A.扩大到原来的5倍 B.不变C.缩小为原来的倍 D.扩大到原来的25倍11.一副三角板有两个直角三角形,如图叠放在一起,则的度数是()A.165° B.120° C.150° D.135°12.若函数y=(m-1)x∣m∣-5是一次函数,则m的值为(

)A.±1 B.-1 C.1 D.2二、填空题(每题4分,共24分)13.在平面直角坐标系中,点A、B、C的坐标分别为:A(﹣2,1),B(﹣3,﹣1),C(1,﹣1).若以A,B,C,D为顶点的四边形为平行四边形,那么点D的坐标是_____.14.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________.15.计算(2a)3的结果等于__.16.已知a2-2ab+b2=6,则a-b=_________.17.对于实数,,定义运算“”如下:.若,则_____.18.某校随机抽查了8名参加2019年成都市初中学业水平考试学生的体育成绩,得到的结果如下表:成绩(分)46484950人数(人)1124则这8名同学的体育成绩的众数为_____.三、解答题(共78分)19.(8分)如图,三个顶点的坐标分别为,,(1)若与关于轴成轴对称,画出,并直接写出三个顶点坐标为_____,______,_______;(2)在轴上是否存在点.使得,如果在,求出点的坐标,如果不存在,说明理由;(3)在轴上找一点,使的值最小,请直接写出点的坐标是______.20.(8分)先化简,再求值:(m+2),其中m=﹣1.21.(8分)如图,平面直角坐标系中,的顶点都在网格点上,其中点坐标为.(1)填空:点的坐标是__________,点的坐标是________;(2)将先向左平移3个单位长度,再向上平移1个单位长度,画出平移后的;(3)求的面积.22.(10分)已知,两地相距,甲骑自行车,乙骑摩托车沿一条笔直的公路由地匀速行驶到地.设行驶时间为,甲、乙离开地的路程分别记为,,它们与的关系如图所示.(1)分别求出线段,所在直线的函数表达式.(2)试求点的坐标,并说明其实际意义.(3)乙在行驶过程中,求两人距离超过时的取值范围.23.(10分)(1)计算:;(2)求满足条件的x值:(x﹣1)2=1.24.(10分)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨;(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.25.(12分)如图,一次函数y1=1x﹣1的图象与y轴交于点A,一次函数y1的图象与y轴交于点B(0,6),点C为两函数图象交点,且点C的横坐标为1.(1)求一次函数y1的函数解析式;(1)求△ABC的面积;(3)问:在坐标轴上,是否存在一点P,使得S△ACP=1S△ABC,请直接写出点P的坐标.26.已知一次函数的图象经过点.(1)若函数图象经过原点,求k,b的值(2)若点是该函数图象上的点,当时,总有,且图象不经过第三象限,求k的取值范围.(3)点在函数图象上,若,求n的取值范围.

参考答案一、选择题(每题4分,共48分)1、B【分析】先求出的范围,即可求出答案.【详解】解:∵1<<2,∴的值约为1.73,故选:B.【点睛】本题考查近似数的确定,熟练掌握四舍五入求近似数的方法是解题的关键.2、D【分析】根据全等三角形的性质即可解决问题.【详解】解:全等三角形的对应边相等,对应角相等,全等三角形的面积相等,故、、正确,故选.【点睛】本题考查全等三角形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.3、A【解析】根据第1~4组的频数,求出第5组的频数,即可确定出其百分比.【详解】根据题意得:40-(12+10+6+8)=40-36=4,则第5组所占的百分比为4÷40=0.1=10%,故选A.【点睛】此题考查了频数与频率,弄清题中的数据是解本题的关键.4、C【分析】根据多边形的内角和=180°(n-2),其中n为正多边形的边数,计算即可【详解】解:正六边形的内角和为:180°×(6-2)=720°故选C.【点睛】此题考查的是求正六边形的内角和,掌握多边形的内角和公式是解决此题的关键.5、D【分析】由多项式乘法运算法则:两多项式相乘时,用一个多项式的各项去乘另一个多项式的每一项,再把所得的积相加,合并同类项后所得的式子就是它们的积.【详解】解:由多项式乘法运算法则得.故选D.【点睛】本题考查多项式乘法运算法则,牢记法则,不要漏项是解答本题的关键.6、C【解析】试题分析:完全平方式的形式是a2±2ab+b2,本题首末两项是x和4这两个数的平方,那么中间一项应为±8x,所以2(m﹣3)=±8,即m=7或﹣1.故答案选C.考点:完全平方式.7、C【分析】原式提取公因式,再利用平方差公式分解即可.【详解】原式=x(1﹣4x2)=x(1+2x)(1﹣2x).故选C.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.8、C【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【详解】A、2a2-2a+1=2a(a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B、(x+y)(x-y)=x2-y2,这是整式的乘法,故此选项不符合题意;C、x2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;D、x2+y2=(x-y)2+2xy,等号的右边不是整式的积的形式,故此选项不符合题意;故选C.【点睛】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.9、A【解析】试题分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.考点:轴对称图形.10、A【分析】把分式的x和y都扩大5倍,再进行约分,进而即可得到答案.【详解】∵把分式的x和y都扩大5倍,得,∴把分式的x和y都扩大5倍,则分式的值扩大到原来的5倍.故选A.【点睛】本题主要考查分式的基本性质,掌握分式的基本性质,进行约分,是解题的关键.11、A【分析】先根据直角三角形两锐角互余求出∠1,再由邻补角的定义求得∠2的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求得的度数.【详解】∵图中是一副三角板,∴∠1=45°,∴∠2=180°-∠1=180°-45°=135°,∴=∠2+30°=135°+30°=165°.故选A.【点睛】本题考查了直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.12、B【解析】根据一次函数的概念,形如y=kx+b(k≠0,k、b为常数)的函数为一次函数,故可知m-1≠0,|m|=1,解得m≠1,m=±1,故m=-1.故选B点睛:此题主要考查了一次函数的概念,利用一次函数的一般式y=kx+b(k≠0,k、b为常数),可得相应的关系式,然后求解即可,这是一个中考常考题题,比较简单.二、填空题(每题4分,共24分)13、(﹣6,1)或(2,1)或(0,﹣3)【分析】如图,首先易得点D纵坐标为1,然后根据平行四边形性质和全等三角形的性质易得点D横坐标为2;同理易得另外两种情况下的点D的坐标.【详解】解:如图,过点A、D作AE⊥BC、DF⊥BC,垂足分别为E、F,∵以A,B,C,D为顶点的四边形为平行四边形,∴AD∥BC,∵B(﹣3,﹣1)、C(1,﹣1);∴BC∥x轴∥AD,∵A(﹣2,1),∴点D纵坐标为1,∵▱ABCD中,AE⊥BC,DF⊥BC,易得△ABE≌△DCF,∴CF=BE=1,∴点D横坐标为1+1=2,∴点D(2,1),同理可得,当D点在A点左侧时,D点坐标为(﹣6,1);当D点在C点下方时,D点坐标为(0,﹣3);综上所述,点D坐标为(﹣6,1)或(2,1)或(0,﹣3),故答案为:(﹣6,1)或(2,1)或(0,﹣3).【点睛】本题主要考查了坐标与图形性质和平行四边形的性质,注意要分情况求解.14、60°或120°【分析】分别从△ABC是锐角三角形与钝角三角形去分析求解即可求得答案.【详解】解:如图(1),∵AB=AC,BD⊥AC,∴∠ADB=90°,∵∠ABD=30°,∴∠A=60°;如图(2),∵AB=AC,BD⊥AC,∴∠BDC=90°,∵∠ABD=30°,∴∠BAD=60°,∴∠BAC=120°;综上所述,它的顶角度数为:60°或120°.【点睛】此题考查了等腰三角形的性质.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.15、8【解析】试题分析:根据幂的乘方与积的乘方运算法则进行计算即可考点:(1)、幂的乘方;(2)、积的乘方16、【解析】由题意得(a-b)2="6,"则=17、【分析】根据题意列出方程,然后用直接开平方法解一元二次方程.【详解】解:根据题目给的算法列式:,整理得:,,,.故答案是:.【点睛】本题考查解一元二次方程,解题的关键是掌握解一元二次方程的方法.18、1【分析】结合表格根据众数的概念求解即可.【详解】10名学生的体育成绩中1分出现的次数最多,众数为1;故答案为:1.【点睛】本题考查了众数的知识,掌握知识点的概念是解答本题的关键.三、解答题(共78分)19、(1)图见解析,,,;(2)存在,或;(3)【分析】(1)作出、、关于轴的对称点、、即可得到坐标;(2)存在.设,根据三角形的面积公式,构建方程即可解决问题;(3)作点关于轴的对称点,连接交轴于,此时的值最小.【详解】解:(1)如图所示,,,.(2)存在.设,,,,,或.(3)如图作点关于轴的对称点,连接交轴于,此时的值最小,此时点的坐标是.【点睛】本题考查轴对称最短路线问题、三角形的面积、坐标与图形变化等知识,熟悉相关性质是解题的关键.20、﹣2m﹣6,﹣2.【分析】把m+2看成,先计算括号里面的,再算乘法,化简后代入求值.【详解】解:(m+2)=(),,=﹣2(m+3)=﹣2m﹣6,当m=﹣1时,原式=﹣2×(﹣1)﹣6=2﹣6=﹣2.【点睛】本题考查了分式的化简求值.掌握分式的加减乘除运算是关键.21、(1),;(2)画图见解析;(3)【分析】(1)利用点的坐标的表示方法写出A点和B点坐标;(2)利用点的坐标平移规律写出点、、的坐标,然后描点得到;(3)用一个矩形的面积分别减去三个三角形的面积可得到△ABC的面积.【详解】解:(1);(2)如图所示:即为所求;(3).【点睛】此题考查坐标与图形变化——平移,解题关键在于掌握在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.22、(1)所在直线的函数表达式,线段所在直线的函数表达式;(2)F的坐标为(1.5,60),甲出发1.5小时后,乙骑摩托车到达乙地;(3)或【分析】(1)利用待定系数法求出线段OD的函数表达式,进而求出点C的坐标,再利用待定系数法求出线段EF所在直线的函数表达式;(2)根据线段EF所在直线的函数表达式求出F的坐标,即可说明其实际意义;(3)根据两条线段的函数表达式列不等式解答即可.【详解】解:(1)设线段所在直线的函数表达式,将,代入,得,∴线段所在直线的函数表达式,把代入,得,∴点的坐标为,设线段所在直线的函数表达式,将,代入,得,解得:,∴线段所在直线的函数表达式;(2)把代入,得,∴的坐标为,实际意义:甲出发1.5小时后,乙骑摩托车到达乙地;(3)由题意可得,或者,当时,,解得,又∵是在乙在行驶过程中,∴当时,,∴,∴,当时,,解得,又∵是在乙在行驶过程中,∴当时,,∴,∴,综上所述,乙在行驶过程中,两人距离超过时的取值范围是:或.【点睛】本题考查了待定系数法求一次函数解析式的运用,行程问题的数量关系的运用,解答时求出一次函数的解析式是关键.23、(2)﹣2;(2)x2=3,x2=﹣2.【分析】(2)根据立方根、算术平方根的定义计算;(2)根据平方根的定义解方程.【详解】解:(2)=﹣3+2=﹣2;(2)(x﹣2)2=2,x﹣2=±2,x=±2+2,x2=3,x2=﹣2.【点睛】本题考查的是实数的运算、一元二次方程的解法,掌握立方根、算术平方根的定义、直接开平方法解一元二次方程的一般步骤是解题的关键.24、(1)甲仓库存放原料240吨,乙仓库存放原料210吨;(2)W=(20﹣a)m+30000;(3)①当10≤a<20时,W随m的增大而增大,②当a=20时,W随m的增大没变化;③当20≤a≤30时,W随m的增大而减小.【解析】(1)根据甲乙两仓库原料间的关系,可得方程组;(2)根据甲的运费与乙的运费,可得函数关系式;(3)根据一次函数的性质,要分类讨论,可得答案.【详解】解:(1)设甲仓库存放原料x吨,乙仓库存放原料y吨,由题意,得,解得,甲仓库存放原料240吨,乙仓库存放原料210吨;(2)由题意,从甲仓库运m吨原料到工厂,则从乙仓库云原料(300﹣m)吨到工厂,总运费W=(120﹣a)m+100(300﹣m)=(20﹣a)m+30000;(3)①当10≤a<20时,20﹣a>0,由一次函数的性质,得W随m的增大而增大,②当a=20是,20﹣a=0,W随m的增大没变化;③当20≤a≤30时,则20﹣a<0,W随m的增大而减小.【点睛】本题考查了二元一次方程组的应用,一次函数的应用,解(1)的关键是利用等量关系列出二元一次方程组,解(2)的关键是利用运费间的关系得出函数解析式;解(3)的关键是利用一次函数的性质,要分类讨论.25、(1)y1=﹣1x+2;(1)12;(3)在坐标轴上,存在一点P,使得S△ACP=1S△ABC,P点的坐标为(0,14)或(0,﹣18)或(﹣7,0)或(9,0).【分析】(1)求出C的坐标,然后利用待定系数法即可解决问题;(1)求得A点的坐标,然后根据三角形面积公式求得即可;(3)分两种情况,利用三角形面积公式即可求得.【详解】解:(1)当x=1时,y1=1x﹣1=1,∴C(1,1),设y1=kx+b,把B(0,2),C(1,1)代入可得,解得,∴一次函数y1的函数解析式为y1=﹣1x+2.(1)∵一次函数y1=1x﹣1的图象与y轴交于点A,∴A(0,﹣1),∴S△ABC=(2+1)×1=8;∵S△ACP=1S△ABC,∴S△ACP=12(3)当P在y轴上时,∴AP

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论