版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖南省华容县八上数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若正多边形的一个外角是45°,则该正多边形从一个顶点出发的对角线的条数为()A.4 B.5 C.6 D.82.下列计算中,不正确的是()A. B.C. D.3.不能判定一个四边形是平行四边形的条件是()A.两组对边分别平行 B.一组对边平行,另一组对边相等C.一组对边平行且相等 D.两组对边分别相等4.下列运算错误的是()A. B. C. D.5.下列运算正确的是(A. B. C. D.6.已知一组数据20、30、40、50、50、50、60、70、80,其中平均数、中位数、众数的大小关系是()A.平均数>中位数>众数 B.平均数<中位数<众数C.中位数<众数<平均数 D.平均数=中位数=众数7.如图,在等边中,平分交于点,点E、F分别是线段BD,BC上的动点,则的最小值等于()A. B. C. D.8.解分式方程时,去分母变形正确的是()A. B.C. D.9.下列等式中,正确的是().A. B. C. D.10.如图,正方形的边长为4,点是的中点,点从点出发,沿移动至终点,设点经过的路径长为,的面积为,则下列图象能大致反映与函数关系的是()A. B. C. D.11.要使分式有意义,则的取值应满足()A. B. C. D.12.有下面的说法:①全等三角形的形状相同;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.在平面直角坐标系中,点A、B、C的坐标分别为:A(﹣2,1),B(﹣3,﹣1),C(1,﹣1).若以A,B,C,D为顶点的四边形为平行四边形,那么点D的坐标是_____.14.若分式方程无解,则a=_____________.15.已知是关于的二元一次方程的一个解,则=___.16.不等式的解集为________.17.如图,Rt△ABC中,∠C=90°,∠BAC的角平分线AE与AC的中线BD交于点F,P为CE中点,连结PF,若CP=2,,则AB的长度为_______.18.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于_______.三、解答题(共78分)19.(8分)在△ABC中,AB=AC,D、E分别在BC和AC上,AD与BE相交于点F.(1)如图1,若∠BAC=60°,BD=CE,求证:∠1=∠2;(2)如图2,在(1)的条件下,连接CF,若CF⊥BF,求证:BF=2AF;(3)如图3,∠BAC=∠BFD=2∠CFD=90°,若S△ABC=2,求S△CDF的值.20.(8分)如图,∠MON=30°,点A、A、A、A…在射线ON上,点B、B、B…在射线OM上,△ABA、△ABA、△ABA…均为等边三角形,若OA=1,则△ABA的边长为_________.21.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.22.(10分)如图,等边△ABC的边AC,BC上各有一点E,D,AE=CD,AD,BE相交于点O.(1)求证:△ABE≌△CAD;(2)若∠OBD=45°,求∠ADC的度数.23.(10分)某中学七班共有45人,该班计划为每名学生购买一套学具,超市现有A、B两种品牌学具可供选择已知1套A学具和1套B学具的售价为45元;2套A学具和5套B学具的售价为150元.、B两种学具每套的售价分别是多少元?现在商店规定,若一次性购买A型学具超过20套,则超出部分按原价的6折出售设购买A型学具a套且不超过30套,购买A、B两种型号的学具共花费w元.请写出w与a的函数关系式;请帮忙设计最省钱的购买方案,并求出所需费用.24.(10分)如图,在平面直角坐标系中,直线与轴交于点,直线与轴交于点,与相交于点.(1)求点的坐标;(2)在轴上一点,若,求点的坐标;(3)直线上一点,平面内一点,若以、、为顶点的三角形与全等,求点的坐标.25.(12分)化简分式,并在、、、、中选一个你喜欢的数作为的值,求代数式的值26.在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=α.(1)如图1,将AD、EB延长,延长线相交于点0.①求证:BE=AD;②用含α的式子表示∠AOB的度数(直接写出结果);(2)如图2,当α=45°时,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N.求证:N是BD的中点.注:第(2)问的解答过程无需注明理由.
参考答案一、选择题(每题4分,共48分)1、B【分析】先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得.【详解】解:根据题意,此正多边形的边数为360°÷45°=8,则该正多边形从一个顶点出发的对角线的条数为:8﹣3=5(条).故选:B.【点睛】本题主要考查了多边形的对角线,多边形的外角和定理,n边形从一个顶点出发可引出(n−3)条对角线.2、D【分析】根据幂的乘方、合并同类项法则、同底数幂的除法和同底数幂的乘法逐一判断即可.【详解】A.,故本选项正确;B.,故本选项正确;C.,故本选项正确;D.,故本选项错误.故选D.【点睛】此题考查的是幂的运算性质和合并同类项,掌握幂的乘方、合并同类项法则、同底数幂的除法和同底数幂的乘法是解决此题的关键.3、B【解析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.A、D、C均符合是平行四边形的条件,B则不能判定是平行四边形.故选B.4、A【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【详解】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(-)2=2,计算正确,故本选项错误;故选A.【点睛】本题考查了二次根式的加减及乘除运算,解答本题的关键是掌握二次根式的加减及乘除法则.5、C【分析】分别根据合并同类项的法则、积的乘方运算法则、幂的乘方运算法则和同底数幂的除法法则逐项计算即可.【详解】解:A、,所以本选项运算错误,不符合题意;B、,所以本选项运算错误,不符合题意;C、,所以本选项运算正确,符合题意;D、,所以本选项运算错误,不符合题意.故选:C.【点睛】本题考查的是合并同类项的法则和幂的运算性质,属于基础题型,熟练掌握幂的运算性质是解题关键.6、D【解析】从小到大数据排列为20、30、40、1、1、1、60、70、80,1出现了3次,为出现次数最多的数,故众数为1;共9个数据,第5个数为1,故中位数是1;平均数=(20+30+40+1+1+1+60+70+80)÷9=1.∴平均数=中位数=众数.故选D.7、A【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在BA上截取BG=BF,
∵∠ABC的平分线交AC于点D,
∴∠GBE=∠FBE,
在△GBE与△FBE中,∴△GBE≌△FBE(SAS),
∴EG=EF.
∴CE+EF=CE+EG≥CG.
如下图示,当有最小值时,即当CG是点C到直线AB的垂线段时,的最小值是又∵是等边三角形,是的角平分线,∴,∴,故选:A.【点睛】本题考查了轴对称的应用,通过构造全等三角形,把进行转化是解题的关键.8、C【分析】分式方程去分母转化为整式方程,即可得到结果.【详解】解:去分母得:1-x=-1-3(x-2),
故选:C.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.9、A【分析】根据实数的性质即可依次判断.【详解】A.,正确;B.,故错误;C.,故错误;D.,故错误,故选A.【点睛】此题主要考查实数的化简,解题的关键是熟知实数的性质.10、C【分析】结合题意分情况讨论:①当点P在AE上时,②当点P在AD上时,③当点P在DC上时,根据三角形面积公式即可得出每段的y与x的函数表达式.【详解】①当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,∴,②当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,,∴,,,,③当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,,∴,综上所述:与的函数表达式为:.故答案为C.【点睛】本题考查动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.11、A【分析】根据分式的分母不为0可得关于x的不等式,解不等式即得答案.【详解】解:要使分式有意义,则,所以.故选:A.【点睛】本题考查了分式有意义的条件,属于应知应会题型,熟知分式的分母不为0是解题的关键.12、D【分析】先分别验证①②③④的正确性,并数出正确的个数,即可得到答案.【详解】①全等三角形的形状相同,根据图形全等的定义,正确;②全等三角形的对应边相等,根据全等三角形的性质,正确;③全等三角形的对应角相等,根据全等三角形的性质,正确;④全等三角形的周长、面积分别相等,正确;故四个命题都正确,故D为答案.【点睛】本题主要考查了全等的定义、全等三角形图形的性质,即全等三角形对应边相等、对应角相等、面积周长均相等.二、填空题(每题4分,共24分)13、(﹣6,1)或(2,1)或(0,﹣3)【分析】如图,首先易得点D纵坐标为1,然后根据平行四边形性质和全等三角形的性质易得点D横坐标为2;同理易得另外两种情况下的点D的坐标.【详解】解:如图,过点A、D作AE⊥BC、DF⊥BC,垂足分别为E、F,∵以A,B,C,D为顶点的四边形为平行四边形,∴AD∥BC,∵B(﹣3,﹣1)、C(1,﹣1);∴BC∥x轴∥AD,∵A(﹣2,1),∴点D纵坐标为1,∵▱ABCD中,AE⊥BC,DF⊥BC,易得△ABE≌△DCF,∴CF=BE=1,∴点D横坐标为1+1=2,∴点D(2,1),同理可得,当D点在A点左侧时,D点坐标为(﹣6,1);当D点在C点下方时,D点坐标为(0,﹣3);综上所述,点D坐标为(﹣6,1)或(2,1)或(0,﹣3),故答案为:(﹣6,1)或(2,1)或(0,﹣3).【点睛】本题主要考查了坐标与图形性质和平行四边形的性质,注意要分情况求解.14、1【分析】先通过去分母,把分式方程化为整式方程,求出,根据分式方程无解,可得是分式方程有增根,进而即可求解.【详解】,去分母得:,解得:,∵分式方程无解,∴是增根,即:8-a=1,∴a=1.故答案是:1.【点睛】本题主要考查分式方程的增根,学会去分母,把分式方程化为整式方程,熟练掌握分式方程的增根的意义:使分式方程的分母等于零的根,是解题的关键.15、-5【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把代入方程得:-m-2=3,解得m=-5,故答案为:-5.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16、【解析】首先去分母,再系数化成1即可;【详解】解:去分母得:-x≥3系数化成1得:x≤-3故答案为:x≤-3【点睛】本题考查了解一元一次不等式,主要考查学生的计算能力.17、15【分析】作辅助线交AB于H,再利用等量关系用△BFP的面积来表示△BEA的面积,利用三角形的面积公式来求解底边AB的长度【详解】作∵AE平分∠BAC∵P为CE中点∵D为AC中点,P为CE中点【点睛】本题考查了辅助线的运用以及三角形的中线平分三角形的面积,解题的关键在于如何利用△BFP的面积来表示△BEA的面积18、1.【分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【详解】∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,则根据勾股定理,得.故答案是:1.三、解答题(共78分)19、(1)见解析;(2)见解析;(3)【分析】(1)根据等边三角形的判定定理得到△ABC为等边三角形,得到AB=BC,∠ABC=∠C=60°,证明△ABD≌△BCE,根据全等三角形的性质证明结论;(2)过B作BH⊥AD,根据全等三角形的性质得到∠BAD=∠CBE,证明△AHB≌△BFC,根据全等三角形的性质解答;(3)过C作CM⊥AD交AD延长线于M,过C作CN⊥BE交BE延长线于N,根据角平分线的性质得到CM=CN,证明△AFB≌△CMA,根据全等三角形的性质得到BF=AM,AF=CM,根据三角形的面积公式列式计算即可.【详解】(1)证明:∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=BC,∠ABC=∠C=60°,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠1=∠2;(2)如图2,过B作BH⊥AD,垂足为H,∵△ABD≌△BCE,∴∠BAD=∠CBE,∵∠ABF+∠CBE=60°,∴∠BFD=∠ABF+∠BAD=60°,∴∠FBH=30°,∴BF=2FH,在△AHB和△BFC中,∴△AHB≌△BFC(AAS),∴BF=AH=AF+FH=2FH,∴AF=FH,∴BF=2AF;(3)如图3,过C作CM⊥AD交AD延长线于M,过C作CN⊥BE交BE延长线于N,∵∠BFD=2∠CFD=90°,∴∠EFC=∠DFC=45°,∴CF是∠MFN的角平分线,∴CM=CN,∵∠BAC=∠BFD=90°,∴∠ABF=∠CAD,在△AFB和△CMA中,∴△AFB≌△CMA(AAS)∴BF=AM,AF=CM,∴AF=CN,∵∠FMC=90°,∠CFM=45°,∴△FMC为等腰直角三角形,∴FM=CM,∴BF=AM=AF+FM=2CM,∵∴S△BDF=2S△CDF,∵AF=CM,FM=CM,∴AF=FM,∴F是AM的中点,∴,∵AF⊥BF,CN⊥BF,AF=CN,∴S△AFB=S△BFC,设S△CDF=x,则S△BDF=2x,∴S△AFB=S△BFC=3x∴,则3x+3x+x=2,解得,x=,即S△CDF=.【点睛】本题考查了全等三角形的判定和性质、三角形的面积计算,掌握全等三角形的判定定理和性质定理是解题的关键.20、32【分析】根据等边三角形的性质可得:AB=AA,∠BAA=60°,再根据外角的性质即可证出:∠OBA=∠MON,由等角对等边可知:AO=AB=1,即可得:等边三角形△ABA的边长为1=20=21-1,同理可知:等边三角形△ABA的边长为2=21=22-1,以此类推:等边三角形△ABA的边长为,从而求出△ABA的边长.【详解】解:∵△ABA是等边三角形∴AB=AA,∠BAA=60°∵∠MON=30°∴∠OBA=∠BAA-∠MON=30°∴∠OBA=∠MON∴AO=AB=1∴等边三角形△ABA的边长为1=20=21-1,OA=OA+AA=2;同理可得:AO=AB=2∴等边三角形△ABA的边长为2=21=22-1,OA=OA+AA=4;同理可得:AO=AB=4∴等边三角形△ABA的边长为4=22=23-1,OA=OA+AA=8;∴等边三角形△ABA的边长为,∴△ABA的边长为:.故填32.【点睛】此题考查的是等边三角形的性质、等腰三角形的判定及探索规律题,掌握等边三角形的三个内角都是60°、等角对等边和探索规律并归纳公式是解决此题的关键.21、(1)﹣4≤y<1;(2)点P的坐标为(2,﹣2).【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【详解】设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=1,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<1.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).考点:1、待定系数法求一次函数的解析式,2、一次函数图象上点的坐标特征,3、一次函数的性质22、(1)见解析;(2)∠ADC=105°【分析】(1)根据等边三角形的性质可得AB=AC,∠BAE=∠C=60°,再根据SAS即可证得结论;(2)根据全等三角形的性质可得∠ABE=∠CAD,然后根据三角形的外角性质和角的和差即可求出∠BOD的度数,再根据三角形的外角性质即可求出答案.【详解】(1)证明:∵△ABC为等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE与△CAD中,∵AB=AC,∠BAE=∠C,AE=CD,∴△ABE≌△CAD(SAS);(2)解:∵△ABE≌△CAD,∴∠ABE=∠CAD,∴∠BOD=∠ABO+∠BAO=∠CAD+∠BAO=∠BAC=60°,∴∠ADC=∠OBD+∠BOD=45°+60°=105°.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质以及三角形的外角性质等知识,属于常考题目,熟练掌握上述知识是解答的关键.23、(1)A、B两种学具每套的售价分别是25和20元;(2),;购买45套B型学具所需费用最省钱,所需费用为900元.【解析】(1)设A种品牌的学具售价为x元,B种品牌的学具售价为y元,根据1套A学具和1套B学具的售价为45元,2套A学具和5套B学具的售价为150元,列出二元一次方程组解答即可;(2)①根据总花费=购买A型学具的费用+购买B型学具的费用,列出函数关系式即可;②分两种情况进行比较即可,第一种情况:由函数关系式可知a=30时花费已经最低,需要费用950元;第二种情况:购买45套B型学具需要900元.【详解】解:设A种品牌的学具售价为x元,B种品牌的学具售价为y元,根据题意有,,解之可得,所以A、B两种学具每套的售价分别是25和20元;因为,其中购买A型学具的数量为a,则购买费用,即函数关系式为:,;符合题意的还有以下情况:Ⅰ、以的方案购买,因为-5<0,所以时,w为最小值,即元;Ⅱ、由于受到购买A型学具数量的限制,购买A型学具30套w已是最小,所以全部购买B型学具45套,此时元元,综上所述,购买45套B型学具所需费用最省钱,所需费用为:900元.故答案为(1)A、B两种学具每套的售价分别是25和20元;(2)①w=-5a+1100,(20<a≤30);②购买45套B型学具所需费用最省钱,所需费用为900元.【点睛】本题考查了二元一次方程组和一次函数的应用.24、(1);(2)点坐标为或;(3)【分析】(1)令中y=0即可求得答案;(2)点在的下方,过点D作DE∥AC交y轴于E,求出DE的解析式即可得到点E的坐标,利用对称性即可得到点E在AC上方时点E的坐标;(3)求出直线与x轴的夹角度数,线段AD的长度,分三种情况求出点F的坐标.【详解】(1)∵点是与轴的交点,代入,,∴点的坐标;(2)当点在的下方,过点作,交轴于点,设解析式为,过,∴2+b=0,得b=-2,∴,∴,点在上方,同理可得,综上:点坐标为或(3)直线与x轴的夹角是45,∵A(-2,0),D(2,0),∴AD=4,作AF1⊥x轴,当A1F=AD=4时,△AF1P≌△ADP,此时点F1的坐标是(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年新型建筑材料研发与生产合作合同
- 2024年定制:孤儿分散供养与管理协议3篇
- 2024年临沂客运资格证模拟考试
- 2024年友情互助借款合同样本2篇
- 2024年石家庄考客运资格证答题技巧与方法
- 2024年建筑企业资质认证合同
- 2024年度砌墙工程物流运输合同5篇
- 2024年陕西客运从业资格证答题技巧与方法图片
- 2024年度铲车故障紧急救援服务合同
- 2024年建筑工地劳务分包协议标准格式版B版
- DB61∕T 5016-2022 绿色建筑评价技术指南
- 冬季安全教育 课件(共17张PPT)
- 采区回风巷维修安全技术措施
- 保密协议(中英文版)
- 房屋建筑和市政工程施工作业安全隐患排查表
- 北京大学本科生毕业论文封面模板
- 术前讨论记录格式和范例(共3页)
- 主动脉球囊反搏操作规程及应急预案
- 太阳能定日镜项目可行性研究报告写作范文
- 《数字多媒体作品创作》教案
- 呼吸运动的调节PPT课件
评论
0/150
提交评论