2023-2024学年贵港市重点中学八上数学期末调研模拟试题含解析_第1页
2023-2024学年贵港市重点中学八上数学期末调研模拟试题含解析_第2页
2023-2024学年贵港市重点中学八上数学期末调研模拟试题含解析_第3页
2023-2024学年贵港市重点中学八上数学期末调研模拟试题含解析_第4页
2023-2024学年贵港市重点中学八上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年贵港市重点中学八上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知是正整数,则满足条件的最大负整数m为()A.-10 B.-40 C.-90 D.-1602.若把分式中的x和y都扩大到原来的3倍,那么分式的值()A.扩大为原来的3倍; B.缩小为原来的; C.缩小为原来的; D.不变;3.下列二次根式中,与是同类二次根式的是()A. B. C. D.4.下列语句不属于命题的是()A.直角都等于90° B.两点之间线段最短C.作线段AB D.若a=b,则a2=b25.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A. B. C. D.6.下列各式中,正确的是A. B. C. D.7.如图,在Rt△ABO中,∠OBA=90°,A(8,8),点C在边AB上,且,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2) B. C. D.8.在−2,0,3,6这四个数中,最大的数是()A.−2B.0C.3D.69.如图所示,有一条线段是()的中线,该线段是().A.线段GH B.线段AD C.线段AE D.线段AF10.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. B. C. D.二、填空题(每小题3分,共24分)11.如图,有一块四边形草地,,.则该四边形草地的面积是___________.12.计算3的结果是___.13.等腰三角形一边长为8,另一边长为5,则此三角形的周长为_____.14.如图,已知的两条直角边长分别为6、8,分别以它的三边为直径向上作三个半圆,求图中阴影部分的面积为______.15.若有意义,则x的取值范围是__________16.分式值为0,则____________________.17.如图,在中,,,点的坐标为,点的坐标为,点的坐标是__________.18.已知一个正数的两个平方根分别为和,则的值为__________.三、解答题(共66分)19.(10分)已知,如图,点A、D、B、E在同一直线上,AC=EF,AD=BE,∠A=∠E,(1)求证:△ABC≌△EDF;(2)当∠CHD=120°,求∠HBD的度数.20.(6分)如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.21.(6分)利用乘法公式计算:22.(8分)23.(8分)化简并求值:,其中,且均不为1.24.(8分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.25.(10分)如图,A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B.求∠AEC的度数.26.(10分)如图,表示某商场一天的手提电脑销售额与销售量的关系,表示该商场一天的手提电脑销售成本与销售量的关系.(1)当销售量台时,销售额_______________万元,销售成本___________万元,利润(销售额销售成本)_____________万元.(2)一天销售__________台时,销售额等于销售成本.(3)当销售量________时,该商场盈利(收入大于成本),当销售量__________时,该商场亏损(收入小于成本).(4)对应的函数关系式是______________.(5)请你写出利润(万元)与销售量(台)间的函数关系式_____________,其中,的取值范围是__________.

参考答案一、选择题(每小题3分,共30分)1、A【解析】依题意可得,-10m>0且是完全平方数,因此可求得m<0,所以满足条件的m的值为-10.故选A.2、B【解析】x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y.用3x和3y代替式子中的x和y,看得到的式子与原来的式子的关系.【详解】用3x和3y代替式子中的x和y得:,则分式的值缩小成原来的.故选B.【点睛】解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.3、C【分析】同类二次根式定义为几个二次根式化简成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.【详解】符合定义的只有C项,所以答案选择C项.【点睛】本题考查了同类二次根式的定义,熟练掌握定义是解答本题的关键.4、C【分析】根据命题的定义对四个选项进行逐一分析即可.【详解】解:A、正确,对直角的性质作出了判断,故不符合题意;B、正确,两点之间,线段最短,作出了判断,故不符合题意;C、错误,是叙述一件事,没作出任何判断,故符合题意;D、正确,对a2和b2的关系作了判断,故不符合题意;故选C.【点睛】本题考查的是命题的定义,即判断一件事情的语句叫命题.5、A【分析】设图①小长方形的长为a,宽为b,由图②表示出上面与下面两个长方形的周长,求出之和,根据题意得到a+2b=m,代入计算即可得到结果.【详解】设小长方形的长为a,宽为b,

上面的长方形周长:2(m-a+n-a),下面的长方形周长:2(m-2b+n-2b),

两式联立,总周长为:2(m-a+n-a)+2(m-2b+n-2b)=4m+4n-4(a+2b),

∵a+2b=m(由图可得),

∴阴影部分总周长为4m+4n-4(a+2b)=4m+4n-4m=4n.

故选:A.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6、D【解析】根据一个正数的算术平方根和平方根的性质可判断A、B;根据=∣a∣可判断C;根据立方根的定义可判断D.【详解】解:=2,故A错误;±=±3,故B错误;=|﹣3|=3,故C错误;=﹣3,故D正确.故选D.【点睛】本题主要考查的是立方根、平方根和算术平方根的性质,熟记性质是解题的关键.7、D【分析】根据已知条件得到AB=OB=8,∠AOB=45°,求得BC=6,OD=BD=4,得到D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),求得直线EC的解析式为y=x+4,解方程组即可得到结论.【详解】解:∵在Rt△ABO中,∠OBA=90°,A(8,8),∴AB=OB=8,∠AOB=45°,∵,点D为OB的中点,∴BC=6,OD=BD=4,∴D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+4,解得,,∴P(,),故选:D.【点睛】本题考查了轴对称-最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.8、C【解析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小.因此,∵−2<0<6∴四个数中,最大的数是3.故选C.考点:实数的大小比较.9、B【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知:线段AD是△ABC的中线.故选B.【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.10、C【详解】根据平角和直角定义,得方程x+y=90;根据∠3比∠3的度数大3°,得方程x=y+3.可列方程组为,故选C.考点:3.由实际问题抽象出二元一次方程组;3.余角和补角.二、填空题(每小题3分,共24分)11、【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△CAD是直角三角形,分别求出△ABC和△CAD的面积,即可得出答案.【详解】连结AC,在△ABC中,∵∠B=90°,AB=4m,BC=3m,∴AC==5(m),S△ABC=×3×4=6(m2),在△ACD中,∵AD=13m,AC=5m,CD=12m,∴AD2=AC2+CD2,∴△ACD是直角三角形,∴S△ACD=×5×12=30(m2).∴四边形ABCD的面积=S△ABC+S△ACD=6+30=36(m2)故答案为:.【点睛】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC和△CAD的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.12、.【分析】首先化简二次根式进而计算得出答案.【详解】原式=32.故答案为.【点睛】本题考查了二次根式的加减,正确化简二次根式是解题关键.13、18或21【解析】当腰为8时,周长为8+8+5=21;当腰为5时,周长为5+5+8=18.故此三角形的周长为18或21.14、1【分析】先分别求出以6、8为直径的三个半圆的面积,再求出三角形ABC的面积,阴影部分的面积是三角形ABC的面积加以AC为直径和以BC为直径的两个半圆的面积再减去以AB为直径的半圆的面积.【详解】解:由勾股定理不难得到AB=10以AC为直径的半圆的面积:π×(6÷2)2×=π=4.5π,以BC为直径的半圆的面积:π×(8÷2)2×=8π,以AB为直径的半圆的面积:π×(10÷2)2×=12.5π,三角形ABC的面积:6×8×=1,阴影部分的面积:1+4.5π+8π−12.5π=1;故答案是:1.【点睛】本题考查了勾股定理的运用,解答此题的关键是,根据图形中半圆的面积、三角形的面积与阴影部分的面积的关系,找出对应部分的面积,列式解答即可.15、【分析】根据二次根式的性质(被开方数大于等于0)解答.【详解】解:根据题意得:,解得:.故答案为:.【点睛】本题考查了二次根式有意义的条件,注意二次根式的被开方数是非负数.16、-1【分析】根据分式的值为零的条件:分子=0且分母≠0,列出方程和不等式即可得出结论.【详解】解:∵分式的值为0∴解得:a=-1故答案为:-1.【点睛】此题考查的是分式的值为零的条件,掌握分式的值为零的条件:分子=0且分母≠0是解决此题的关键.17、(1,6)【分析】过A和B分别作AD⊥OC于D,BE⊥OC于E,利用已知条件可证明△ADC≌△CEB,再由全等三角形的性质和已知数据即可求出B点的坐标.【详解】解:过A和B分别作AD⊥OC于D,BE⊥OC于E,

∵∠ACB=90°,

∴∠ACD+∠CAD=90°∠ACD+∠BCE=90°,

∴∠CAD=∠BCE,

在△ADC和△CEB中,

∵,

∴△ADC≌△CEB(AAS),

∴DC=BE,AD=CE,

∵点C的坐标为(-2,0),点A的坐标为(-8,3),

∴OC=2,AD=CE=3,OD=8,

∴CD=OD-OC=6,OE=CE-OC=3-2=1,

∴BE=6,

∴则B点的坐标是(1,6)

故答案为(1,6)【点睛】本题借助于坐标与图形性质,重点考查了直角三角形的性质、全等三角形的判定和性质,解题的关键是做高线构造全等三角形.18、1【分析】根据可列式,求解到的值,再代入即可得到最后答案.【详解】解:和为一个正数的平方根,解得故答案为:1.【点睛】本题考查了平方根的知识,要注意到正数的平方根有两个,一正一负,互为相反数.三、解答题(共66分)19、(1)详见解析;(2)60°.【分析】(1)根据SAS即可证明:△ABC≌△EDF;(2)由(1)可知∠HDB=∠HBD,再利用三角形的外角关系即可求出∠HBD的度数.【详解】(1)∵AD=BE,∴AB=ED,在△ABC和△EDF中,,∴△ABC≌△EDF(SAS);(2)∵△ABC≌△EDF,∴∠HDB=∠HBD,∵∠CHD=∠HDB+∠HBD=120°,∴∠HBD=60°.【点睛】本题考查了全等三角形的判定与性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.20、++1.【解析】先根据题意得出AD=BD,再由勾股定理得出AB的长.在Rt△ADC中,根据直角三角形的性质得出AC及CD的长,进而可得出结论.【详解】∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ADB中,∵∠B+∠BAD=90°,∠B=45°,∴∠B=∠BAD=45°,∴AD=BD=1,AB.在Rt△ADC中,∵∠C=10°,∴AC=2AD=2,∴CD,BC=BD+CD=1,∴AB+AC+BC1.【点睛】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.21、【分析】根据乘法分配律的逆运算进行计算,即可得到答案.【详解】解:===;【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.22、1【分析】先将化成最简二次根式,再计算二次根式的加法、除法,最后计算有理数的减法即可.【详解】.【点睛】本题考查了二次根式的化简、二次根式的加法、除法等知识点,熟记运算法则是解题关键.23、,【分析】先化简分式,再把代入求值即可.【详解】解:.当,且均不为1时,原式=.【点睛】本题考查的是分式的化简求值,掌握分式的混合运算是关键.24、(1)∠D是直角.理由见解析;(2)2.【分析】(1)连接AC,先根据勾股定理求得AC的长,再根据勾股定理的逆定理,求得∠D=90°即可;

(2)根据△ACD和△ACB的面积之和等于四边形ABCD的面积,进行计算即可.【详解】(1)∠D是直角.理由如下:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理得AC2=202+152=1.又∵CD=7,AD=24,∴CD2+AD2=1,∴AC2=CD2+AD2,∴∠D=90°.(2)四边形ABCD的面积=AD•DC+AB•BC=×24×7+×20×15=2.【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆定理.通过作辅助线,将四边形问题转化为三角形问题是关键.25、30°【分析】试题分析:连接DE,由A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B可证明得到△CDE为等边三角形,再利用直角三角形两锐角互余即可得.【详解】试题解析:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论