2023-2024学年广东省惠州市名校数学八上期末联考模拟试题含解析_第1页
2023-2024学年广东省惠州市名校数学八上期末联考模拟试题含解析_第2页
2023-2024学年广东省惠州市名校数学八上期末联考模拟试题含解析_第3页
2023-2024学年广东省惠州市名校数学八上期末联考模拟试题含解析_第4页
2023-2024学年广东省惠州市名校数学八上期末联考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年广东省惠州市名校数学八上期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在△ABC中,∠ACB=90°,AC=40,CB=9,M、N在AB上且AM=AC,BN=BC,则MN的长为()A.6 B.7 C.8 D.92.如果,那么代数式的值为()A.1 B.2 C.3 D.43.如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍 B.缩小3倍 C.缩小6倍 D.不变4.在平面直角坐标系xOy中,点P在由直线y=-x+3,直线y=4和直线x=1所围成的区域内或其边界上,点Q在x轴上,若点R的坐标为R(2,2),则QP+QR的最小值为()A. B.+2 C.3 D.45.如图,∠ABC=∠ACB,AD、BD分别平分△ABC的外角∠EAC、内角∠ABC,以下结论:①AD∥BC;②∠ACB=2∠ADB;③BD⊥AC;④AC=AD.其中正确的结论有()A.①② B.①②④ C.①②③ D.①③④6.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.47.计算=().A.6x B. C.30x D.8.一个多边形的内角和是720°,这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形9.正比例函数()的函数值随着增大而减小,则一次函数的图象大致是()A. B.C. D.10.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A.15,16 B.15,15 C.15,15.5 D.16,1511.如图是两个全等的三角形纸片,其三边长之比为,按图中方法分别将其对折,使折痕(图中虚线)过其中的一个顶点,且使该项点所在两边重合,记折叠后不重叠部分面积分别为,已知,则纸片的面积是()A. B. C. D.12.下列命题中,属于假命题的是()A.相等的两个角是对顶角 B.两直线平行,同位角相等C.同位角相等,两直线平行 D.三角形三个内角和等于180°二、填空题(每题4分,共24分)13.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________________________________________________.14.若,则代数式的值为___________.15.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是__________.16.一个等腰三角形的两边长分别为5或6,则这个等腰三角形的周长是.17.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a﹣b)5=__________.18.诺如病毒的直径大约0.0000005米,将0.0000005用科学记数法可表示为________三、解答题(共78分)19.(8分)如图为一个广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求图中△ABC的周长和面积.20.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1521.(8分)某公司购买了一批、型芯片,其中型芯片的单价比型芯片的单价少9元,已知该公司用3120元购买型芯片的条数与用4200元购买型芯片的条数相等.(1)求该公司购买的、型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条型芯片?22.(10分)解不等式组,并求出它的整数解的和.23.(10分)计算:(1)计算:(2)计算:(3)先化简,再求值,其中.24.(10分)我们定义:对角线互相垂直的四边形叫做垂美四边形.(1)如图1,垂美四边形ABCD的对角线AC,BD交于O.求证:AB2+CD2=AD2+BC2;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结BE,CG,GE.①求证:四边形BCGE是垂美四边形;②若AC=4,AB=5,求GE的长.25.(12分)在平面直角坐标系中,点A(4,0),B(0,4),点C是x轴负半轴上的一动点,连接BC,过点A作直线BC的垂线,垂足为D,交y轴于点E.(1)如图(1),①判断与是否相等(直接写出结论,不需要证明).②若OC=2,求点E的坐标.(2)如图(2),若OC<4,连接DO,求证:DO平分.(3)若OC>4时,请问(2)的结论是否成立?若成立,画出图形,并证明;若不成立,说明理由.26.如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)长为的线段PQ,其中P、Q都在格点上;(2)面积为13的正方形ABCD,其中A、B、C、D都在格点上.

参考答案一、选择题(每题4分,共48分)1、C【分析】首先根据Rt△ABC的勾股定理得出AB的长度,根据AM=AC得出BM的长度,然后根据BN=BC得出BN的长度,从而根据MN=BN-BM得出答案.【详解】∠ACB=90°,AC=40,CB=9AB===41又AM=AC,BN=BCAM=40,BN=9BM=AB-AM=41-40=1MN=BN-BM=9-1=8故选C考点:勾股定理2、A【解析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y代入即可得.【详解】解:∵原式===∵3x-4y=0,∴3x=4y原式==1故选:A.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.3、A【分析】把原分式中的x换成3x,把y换成3y进行计算,再与原分式比较即可.【详解】解:把原分式中的x换成3x,把y换成3y,那么==3×.故选:A.【点睛】考核知识点:分式性质.运用性质变形是关键.4、A【解析】试题分析:本题需先根据题意画出图形,再确定出使QP+QR最小时点Q所在的位置,然后求出QP+QR的值即可.试题解析:当点P在直线y=-x+3和x=1的交点上时,作P关于x轴的对称点P′,连接P′R,交x轴于点Q,此时PQ+QR最小,连接PR,∵PR=1,PP′=4∴P′R=∴PQ+QR的最小值为故选A.考点:一次函数综合题.5、B【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质进而解答即可.【详解】解:∵AD平分∠EAC,

∴∠EAC=2∠EAD,

∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,

∴∠EAD=∠ABC,

∴AD∥BC,∴①正确;

∵AD∥BC,

∴∠ADB=∠DBC,

∵BD平分∠ABC,∠ABC=∠ACB,

∴∠ABC=∠ACB=2∠DBC,

∴∠ACB=2∠ADB,∴②正确;

∵BD平分∠ABC,∠ABC=∠ACB,

∵∠ABC+∠ACB+∠BAC=180°,

当∠BAC=∠C时,才有∠ABD+∠BAC=90°,故③错误;

∵∠ADB=∠ABD,

∴AD=AB,

∴AD=AC,故④正确;

故选:B.【点睛】本题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察学生的推理能力,有一定的难度.6、C【解析】试题分析:如图,过点E作EF⊥BC交BC于点F,根据角平分线的性质可得DE=EF=2,所以△BCE的面积等于,故答案选C.考点:角平分线的性质;三角形的面积公式.7、B【解析】根据分式的性质,分子分母约去6x即可得出答案.【详解】解:=,故选B.【点睛】此题考查了分式的性质,熟练掌握分式的性质是解题的关键.8、B【解析】利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.解:设这个多边形的边数为n,由题意,得(n﹣2)180°=720°,解得:n=6,故这个多边形是六边形.故选B.9、B【分析】根据正比例函数的性质得到k<0,然后根据一次函数的性质可得一次函数的图像经过一、三象限,且与y轴的正半轴相交.【详解】解:正比例函数()的函数值随着增大而减小.k<0.一次函数的一次项系数大于0,常数项大于0.一次函数的图像经过一、三象限,且与y轴的正半轴相交.故选:B.【点睛】本题考查了一次函数的图象和性质,灵活掌握一次函数图象和性质是解题的关键.10、C【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为=15.5岁,故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.11、A【分析】设AC=FH=3x,则BC=GH=4x,AB=GF=5x,根据勾股定理即可求得CD的长,利用x表示出SA,同理表示出SB,根据,即可求得x的值,进而求得三角形的面积.【详解】解:如图,设AC=FH=3x,则BC=GH=4x,AB=GF=5x.设CD=y,则BD=4x-y,DE=CD=y,在直角△BDE中,BE=5x-3x=2x,根据勾股定理可得:4x2+y2=(4x-y)2,解得:y=x,则SA=BE•DE=×2x•x=x2,同理可得:SB=x2,∵SA-SB=10,∴x2-x2=10,∴x2=12,∴纸片的面积是:×3x•4x=6x2=1.故选A.【点睛】本题主要考查了折叠的性质,勾股定理,根据勾股定理求得CD的长是解题的关键.12、A【分析】利用对顶角的性质、平行线的性质及判定及三角形的内角和等知识分别判断后即可确定答案.【详解】A、相等的两个角不一定是对顶角,故错误,是假命题;B、两直线平行,同位角相等,正确,是真命题;C、同位角相等,两直线平行,正确,是真命题;D、三角形三个内角和等于180°,正确,是真命题;故选:A.【点睛】此题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质及判定及三角形的内角和,难度不大.二、填空题(每题4分,共24分)13、如果两条直线平行于同一条直线,那么这两条直线平行.【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【详解】命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【点睛】任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.14、1【分析】将因式分解,然后代入求值即可.【详解】解:==将代入,得原式=故答案为:1.【点睛】此题考查的是因式分解,掌握利用提取公因式法和完全平方公式因式分解是解决此题的关键.15、AC=DE【解析】用“HL”判定△ABC≌△DBE,已知BC=BE,再添加斜边DE=AC即可.16、16或1.【解析】由于未说明两边哪个是腰哪个是底,故需分两种情况讨论:(1)当等腰三角形的腰为5,底为6时,周长为5+5+6=16;(2)当等腰三角形的腰为6,底为5时,周长为5+6+6=1.∴这个等腰三角形的周长是16或1.17、a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5【分析】根据“杨辉三角”,寻找解题的规律:(a+b)n的展开式共有(n+1)项,各项系数依次为2n.根据规律,(a-b)5的展开式共有6项,各项系数依次为1,-5,10,-10,5,-1,系数和为27,

故(a-b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5.故答案为a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5.

【详解】请在此输入详解!18、5×10-7【解析】试题解析:0.0000005=5×10-7三、解答题(共78分)19、△ABC的周长为41m,△ABC的面积为84m1.【解析】直接利用勾股定理逆定理得出AD⊥BC,再利用勾股定理得出DC的长,进而得出答案.【详解】解:在△ABD中,∵AB=13m,AD=11m,BD=5m,∴AB1=AD1+BD1,∴AD⊥BC,在Rt△ADC中,∵AD=11m,AC=15m,∴DC==9(m),∴△ABC的周长为41m,△ABC的面积为84m1.【点睛】此题主要考查了勾股定理以及勾股定理的逆定理,正确得出DC的长是解题关键.20、(1)(m﹣2)(x+y)(x﹣y);(2)(x+5)(x﹣3)【分析】(1)将原式变形后,利用提公因式法和平方差公式进行因式分解;(2)利用十字相乘法进行分解即可.【详解】解:(1)原式=x2(m﹣2)﹣y2(m﹣2)=(m﹣2)(x+y)(x﹣y);(2)原式=(x+5)(x﹣3).【点睛】本题考查提公因式法、公式法进行因式分解,将多项式变形为相应的形式是正确利用提公因式法、公式法的前提.21、(1)A型芯片的单价为2元/条,B型芯片的单价为35元/条;(2)1.【解析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【详解】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=2.答:A型芯片的单价为2元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:2a+35(200﹣a)=621,解得:a=1.答:购买了1条A型芯片.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.22、1【分析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的整数解即可.【详解】解不等式得:,解不等式得:,此不等式组的解集为,故它的整数解为:-2,-1,0,1,2,1,它的整数解的和为1.【点睛】本题主要考查解一元一次不等式组及其整数解,注意各个不等式的解集的公共部分就是这个不等式组的解集.但本题是要求整数解,所以要找出在这范围内的整数.23、(1)9;(1);(3),-1【分析】(1)根据平方根和立方根的性质进行化简,然后进行运算即可;(1)根据积的乘方,幂的乘方和同底数幂的除法进行运算即可;(3)根据多项式乘以多项式的运算法则,进行化简,再计算即可.【详解】解(1)原式=6+1+1=9;(1)原式;(3)原式==当3b-a=-1时原式=-1.【点睛】本题考查了平方根,立方根,积的乘方,幂的乘方,同底数幂的除法和多项式乘以多项式,掌握运算法则是解题关键.24、(1)见解析;(2)①见解析;②GE=【分析】(1)由垂美四边形得出AC⊥BD,则∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,即可得出结论;

(2)①连接BG、CE相交于点N,CE交AB于点M,由正方形的性质得出AG=AC,AB=AE,∠CAG=∠BAE=90°,易求∠GAB=∠CAE,由SAS证得△GAB≌△CAE,得出∠ABG=∠AEC,由∠AEC+∠AME=90°,得出∠ABG+∠AME=90°,推出∠ABG+∠BMN=90°,即CE⊥BG,即可得出结论;

②垂美四边形得出CG2+BE2=CB2+GE2,由勾股定理得出BC==3,由正方形的性质得出CG=4,BE=5,则GE2=CG2+BE2-CB2=73,即可得出结果.【详解】(1)证明:∵垂美四边形ABCD的对角线AC,BD交于O,∴AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;(2)①证明:连接BG、CE相交于点N,CE交AB于点M,如图2所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,∴∠ABG+∠BMN=90°,即CE⊥BG,∴四边形BCGE是垂美四边形;②解:∵四边形BCGE是垂美四边形,∴由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论