版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
物理化学题库
物理化学
第一章热力学第一定律
1.“根据道尔顿分压定律p=∑BpB压力具有加和性,因此是广延性
质。”这一结论正确否?为什么?
答:不对。压力与温度一样是强度性质。不具有加和性,所谓加和性,
是指一个热力学平衡体系中,
某物质的数量与体系中物质的数量成正比,如Cp=∑nBCp,m(B)。
而道尔顿分压定律中的分压pB
是指在一定温度下,组分B单独占有混合气体相同体积时所具有
的压力。总压与分压的关系不是同
一热力学平衡体系中物量之间的关系,与物质的数量不成正比关
系,故p=∑pB不属加和性。本题
所犯错误是把混和气体中总压p与各组分分压pB关系误认为
是热力学平衡体系中整体与部分的关系。
2.“凡是体系的温度升高时就一定吸热,而温度不变时,体系既不吸
热也不放热”,这种说法对否?
举实例说明。
答:不对。例如:绝热条件下压缩气体,体系温度升高,但并未从环
境中吸热。又如:在绝热体容器
中,将H2SO4注入水中,体系温度升高,但并未从环境吸热。再
如:理想气体等温膨胀,从环境
吸了热,体系温度并不变化。在温度不变时,体系可以放热或吸
热,相变时就是这样。例如水在
1atm、100℃下变成水蒸气,温度不变则吸热。
3.-p(外)dV与-p(外)ΔV有何不同?-pV就是体积功,对吗?为
什么在例2中-pVm(g)是体积功?
答:-p(外)dV是指极其微小的体积功。-p(外)ΔV是在指外压不
变的过程体积功。即在外压p不
变的过程中体积由V1变化到V2(ΔV=V2-V1)时的体积功。-pV
不是体积功,体积功是指在外压
(p外)作用下,外压p与体积变化值(dV)的乘积。V与dV是不
同的,前者是指体系的体积,后
者是体积的变化值。体积变化时才有体积功。例2中的-pVm(g)
实为-p[Vm(g)-Vm(l)],在这里忽略
了Vm(l),这里的Vm(g)实为ΔV=Vm(g)-Vm(l),因此-pVm是体积
功。
4.“功、热与内能均是能量,所以它们的性质相同”这句话正确否?
答:不正确。虽然功、热与内能都有能量的量纲,但在性质上不同,
内能是体系的本身性质,是状
态函数。而热与功是体系与环境间交换的能量,是与热力学过程
相联系的过程量。功与热是被
“交换”或“传递”中的能量,不是体系本身的性质,不是状态
函数,与内能性质不同。热与功
也有区别,热是微粒无序运动而传递的能量,功是微粒有序运动
而传递的能量。
5.为什么本教材中热力学第一定律表达式是:ΔU=Q+W,而有些
书中采用ΔU=Q-W,
两者是否有矛盾,为什么?
答:因为本教材规定:体系吸热为正,放热为负;体系对外作功,W
为负值,环境对体系作功,
W为正值,总的来说,体系在过程中得到能量为正,失去能量为
负。在这个规定下,要满
足能量守衡原理,则必须是体系吸的热加上环境对体系作的功后,
才等于体系内能的变化值,
所以是ΔU=Q+W。而有些书上,功的符号与上述规定相反,(体
系向环境做功,W为正值,
环境向体系做功,W为负值),则就是ΔU=Q-W。
6.一体系由A态到B态,沿途径Ⅰ放热100J,对体系作功50J。
问(1)由A态沿途径Ⅱ到B态体系
作功80J,其Q值为多少?(2)如体系由B态沿途径Ⅲ回到A态
得50J功,体系吸热环是放热?
Q为多少?
答:(1)ΔUA→B=-100+50=-50JQ=ΔUA→B-W=-50-(-
80)=30J
(2)ΔUB→A=-ΔUA→B=50JQ=ΔUB→A-W=50-50=0
体系不吸热也放热
7.已知体系的状态方程式F(T,p,V)=0,由U=f(T,V)写出当压
力不变时气体的内能对温度的
变化率的表达式。
答:dU=(U/T)VdT+(U/V)TdV
压力不变时,除以dT:(U/T)p=(U/T)V+(U/
V)T(V/T)p
8.为什么无非体积功的等压过程的热,只决定于体系的初、终态?
答:因为无其它功的等压过程中Qp=ΔH,而ΔH是体系状态函数
的改变值,其大小只决定于体
系的始终态,所以在无其它功的等压过程Qp大小只决定于初终
态。
9.“因ΔH=Qp,所以只有等压过程才有ΔH。”这句话是否正确?
答:不正确。H是状态函数,H=U+pV,凡是体系状态发生变化,
不管经过什么过程,体系的焓
值都可能变化,即ΔH有可能不等于零。
10.因为“ΔH=Qp,所以Qp也具有状态函数的性质”对吗?为什
么?
答:不对,ΔH=Qp,只说明Qp等于状态函数H的变化值ΔH,
仅是数值上相等,并不意味着Qp
具有状态函数的性质。ΔH=Qp只能说在恒压而不做非体积功的
特定条件下,Qp的数值等于体
系状态函数H的改变,而不能认为Qp也是状态函数。
11.试证明在无非体积功的等容过程中体系的ΔU=QV。
证明:ΔU=Q+W等容时ΔV=0,又无其它功,W=0
∴ΔU=QV
12.为什么对于理想气体,公式ΔU=nCV,mdT可用来计算任一过
程的ΔU,
并不受定容条件的限制?
答:因为对理想气体,U=f(T),内能仅是温度的函数,从始态出发,
不论经什么过程,
达到不同的终态,只要始终态温度分别相同,ΔU就一定相同。
所以公式ΔU=CV,mdT
并不受定容条件的限制。
恒容过程ΔU1=CV,mdT两者终态的温度相同
恒压过程ΔU2=ΔU1+ΔU3∴ΔU3=0∴Δ
U2=ΔU1=CV,mdp
即1mol理想气体不论什么过程,只要变到相同温度的终态其Δ
U总是等于CV,mdT
13.为什么理想气体常数R在数值上等于1mol理想气体升高1K时
所作的等压体积功?
答:W=-p外ΔV=-p(V2-V1)=-nR(T2-T1)
当n=1molT2-T1=1K时W=R
14.体系中有100克N2,完全转化成NH3,如按计量方程式N2+3H2
→2NH3,Δξ=?,如按计量
方程式N2+H2—→NH3,Δξ=?,如反应前体系中N2的物
质的量n(N2)=10mol,分别按
上述二计量方程式所得的Δξ计算反应后的n'(N2)=?
答:nN2(0)=100/28=3.57molnN2(ξ)=0
Δξ1=[nN2(ξ)-nN2(0)]/νB=(0-3.57)/(-1)=3.57mol
Δξ2=(0-3.57)/(-1/2)=7.14mol
公式:nB(ξ)=nB(0)+νBΔξnB(0)=10mol
按方程式:N2+3H2→2NH3,nN2(3.57)=10-(-1)×3.57=6.43mol
按方程式:N2+H2→NH3,n'N2(7.14)=10-(-1/2)×7.14=
6.43mol
两者结果相同。
15.根据Qp,m=QV,m+∑νB(g)RT,Qp,m一定大于QV,m吗?为什
么?举例说明。
答:Qp,m不一定大于QV,m,其大小比较取决于∑νB(g)的符号,
若∑νB(g)>0,
则Qp,m>QV,m,但若∑νB(g)<0,Qp,m<QV,m
例如:H2(g)+O2(g)—→H2O(l)
-1
ΔHm=Qp=-285.9kJ·mol∑νB(g)=-1.5<0
3
QV,m=Qp,m-∑νB(g)RT=-285.8×10+1.5×8.314×298=-
282kJ·mol-1
Qp,m<QV,m
又例如:Zn(s)+H2SO4(aq)—→ZnSO4(aq)+H2(g)↑
-1
Qp,m=-177.9kJ·mol∑νB(g)=1>0
-3
QV,m=Qp,m-∑νB(g)RT=-177.9×10-8.314×298=-
180.37KJ·mol-1
Qp,m>QV,m
16.“稳定单值的焓值等于零”;“化合物摩尔生成热就是1mol该物
质所具有的焓值”
对吗?为什么?
答:不对。稳定单质的焓值并不等于零。但可以说标准状态下稳定
单质的规定焓值等
于零,人为规定标准状态下,稳定单质的生成焓,即规定焓为
0。化合物的摩尔生
成热不是1mol物质所具有的焓的绝对值,而是相对于生成它
的稳定单质的焓的相
对值。即是以标准状态下稳定单质生成热为零作基线,得出的
相对值。
17.证明由键焓计算反应的ΔHm的公式是:ΔrHm=(-∑nii)(反
应物-产物)
答:化合物的ΔfHni(ΔH)-(∑njj)
而反应热效应ΔrHm=∑νB(ΔHm,f)B=∑νB[∑ni(ΔH
原子)-∑(njj)]B
=∑νB(∑niΔH)B-∑νB(∑nj
j)B
因组成产物与反应物的元素相同,且各种原子的数目也相等,
即∑νB(∑niΔH)B=0
便有ΔHm=-∑νB(∑njj)B
=-∑νB(∑njj)B(反应物)-∑νB(∑njj)(产物)
若将反应物的计量系数νB考虑为正值,则上式(-∑νB(∑nj
j)B(反应物),便成为
∑νB(∑njj)B(反应物),再将一个B分子中的j键数nj乘上方
程式中反应物的计
量系数ν,便是该反应方程中反应物总j键数nj,改写为ni,键
焓i,那么,
反应物的总键焓值便为(∑nii)(反应物)。同理对产物的计量系
数考虑为正值,
则为(∑nii)(产物)。便得:ΔHm=(∑nii)(反应物)-(∑ni
i)(产物)。
18.反应A(g)+2B(g)—→C(g)的ΔrHm(298.2K)>0,则此反应进行
时必定吸热,
对吗?为什么?
答:不对。只有在等压下,无非体积功时,Qp=ΔHm,ΔHm>0,
故Qp>0,体系必定
吸热。但在有非体积功,或者非等压条件下,ΔHm≠Qp,Δ
Hm>0,Qp可以小于0,
等于0,不一定吸热。例如,绝热容器中H2与O2燃烧,ΔHm
>0,但Q=0,
不吸热。
19.“可逆过程一定是循还过程,循还过程一定是可逆过程”这种说
法对吗?为什么?
答:不对。可逆过程不一定为循环过程。因为只要体系由A态在无
摩擦等消耗效应存在
的情况下,经由一系列无限接近平衡状态到达B态,则由A到
B的过程是可逆。显然,
如果初态A与终态B是两个不同的状态,则A到B便不是循
环过程;如果B态就是
A态则该过程便是可逆循环过程。循环过程不一定是可逆的,
由始态A开始,状态经
过变化,不论途径可逆与否,只要回到始态A,就是循环过程。
只是,由A态开始,
在无摩擦等消耗效应存在的情况下,经过由一系列无限接近平衡
状态,又回到A态的
循环过程才是可逆循环过程。总之可逆过程与循环过程是两个完
全不同的概念。
20.气体同一初态(p1,V1)出发分别经等温可逆压缩与绝热可逆压缩,
至终态,终态体
积都是V2,哪一个过程所作压缩功大些?为什么?
答:(规定环境做功为正值),绝热可逆压缩功大于等温可逆压缩功。
这是因为绝热压缩
时,环境所做功全部都变成气体的内能,因而气体的温度升高,
故当气体终态体积为
V2时,气体的压力比经等温可逆到达V2时气体的压力要高,
即绝热可逆压缩时,
环境施加的压力大些,因而所做压缩功也多些。
21.从同一初态(p1,V1)分别经可逆的绝热膨胀与不可逆的绝热膨胀至
终态体积都是V2
时,气体压力相同吗?为什么?
答:不相同。可逆绝热膨胀由(p1,V1)到V2体系付出的功大于不
可逆绝热膨胀由
(p1,V1)到V2所付出的功。而两过程的Q都等于零,因而
前一过程中体系内能
降低得更多,相应终态气体的温度也低些。所以可逆绝热膨胀比
不可逆绝热膨胀到
终态V2时气体的压力低些。
22.理想气体经一等温循环,能否将环境的热转化为功?如果是等温
可逆循环又怎样?
答:不能。理想气体的内能在等温过程中不变。ΔU=0
恒外压不可逆膨胀
假设它由A(p1,V1,T1)—————————→B(p2,V2,T1)
所作功W(不)=-Q(不)=-p2(V2-V1),再经过可逆压缩回到始
态,
可逆压缩
B(p2,V2,T1)——————→A(p1,V1,T1)(原初态)
W'=-Q'=-RTln(V1/V2)(因为可逆压缩环境消耗的功
最小)
整个循环过程:
W=W(不)+W'=-p2(V2-V1)-RTln(V1/V2)=-Q
∵-p2(V2-V1)<0,-RTln(V1/V2)>0,并且前者的绝对值小于
后者,
∴W=-Q>0,Q<0,环境得热,W>0体系得功,即环境失热。
说明整个循环过程中,环境对体系作功,而得到是等量的热,不
是把环境的热变成功。
同样,如果A—→B是等温可逆膨胀,B—→A是等温不可逆压
缩,结果也是W>0,
Q<0,体系得功,环境得热,即环境付出功得到热。不能把环
境热变成功。
如果A——B是等温可逆膨胀,B——A是等温可逆压缩,即为
等温可逆循环过程,
W=-RTln(V2/V1)-RTln(V1/V2)=0,则Q=-W=0,不论是
体系还是环境,
均未得失功,各自状态未变。
由上分析,理想气体经一等温循环,不能将环境温转化为功。
23.将置于室内的一电冰箱的箱门打开,使其致冷机运转,能否降低
全室温度?设该机在
0℃与室温(25℃)作理想可逆循环每小时能冻出1Kg的冰,如
房间的总热容为150
KJ·K-1,估算电冰箱工作10小时后室内温度的变化?
答:不能。因为,冰箱门打开,箱内与室内空气流通,使高低两个热
源温度相等。致冷机
工作,致冷机消耗的电功以及冰箱内冷却器(低温热源)吸的热都
以热的形式放到室
内(高温热源),当冰箱门打开时,室内空气又流入箱内,使室内
气温升高。这样,
总的效果是致冷机消耗电能转化为室内空气的内能,反使室内温
度升高。因而使室
内温度非但不降低反而升高。
1克水的比热为4.184J·K-1,1克水的凝固热为339J·g-1
Q'=1000×(4.184×25+339)×10=4436KJ
β=T1/(T2-T1)=273/25=10.92β=Q'/W
W=Q'/10.92=4436/10.92=406.23KJ
Q2=W-Q'=4842KJΔT=4842/150=32K
T3=298+32=330K,房间温度变为330K。
第二章热力学第二定律
1.什么是自发过程?实际过程一定是自发过程?
答:体系不需要外界对其作非体积功就可能发生的过程叫自发性过
程,或者体系在理论
上或实际上能向外界做非体积功的过程叫自发过程。实际过程不
一定是自发性过程,
如电解水就是不具有自发性的过程。
2.为什么热力学第二定律也可表达为:“一切实际过程都是热力学不
可逆的”?
答:热力学第二定律的经典表述法,实际上涉及的是热与功转化的实
际过程的不可逆性。
导使过程的不可逆性都相互关联,如果功与热的转化过程是可逆
的,那么所有的实
际过程发生后都不会留下痕迹,那也成为可逆的了,这样便推翻
了热力学第二定律,
也否定了热功转化的不可逆性,则“实际过程都是不可逆的”也不
成立。因而可用“
一切实际过程都是不可逆的”来表述热力学第二定律。
3.可逆过程的热温商与熵变是否相等,为什么?不可过程的热温商
与熵变是否相等?
答:可逆过程的热温商即等于熵变。即ΔS=QR/T(或ΔS=∫δ
QR/T)。不可逆过程热温
商与熵变不等,其原因在于可逆过程的QR大于QIr,问题实质
是不可逆过程熵变
由两部分来源,一个是热温商,另一个是内摩擦等不可逆因素造
成的。因此,不可逆
过程熵变大于热温商。由于熵是状态函数,熵变不论过程可逆与
否,一旦始终态确定,
则ΔS值是一定的。
4.为什么说(2-11)式是过程方向的共同判据?为什么说它也是过程
不可逆程度的判据?
答:(2-11)式为:ΔSA→B-∑AQ/T≥0,由于实际过程是不可逆
的,该式指出了实
际过程只能沿ΔSA→B-∑AQ/T大于零的方向进行;而Δ
B
SA→B-∑AδQ/T小于零
的过程是不可能发生的。因而(2-11)式可作为过程方向的共同判
据。但不是自发过程方
向的判据.(ΔS-∑δQ/T)的差值越大则实际过程的不可逆程度越
大,因此又是不可逆
程度的判据。
5.以下这些说法的错误在哪里?为什么会产生这样的错误?写出
正确的说法。
B
(1)因为ΔS=|δQR/T,所以只有可逆过程才有熵变;而ΔS>∑
δQIr/T,所以不可
A
逆过程只有热温商,但是没有熵变。
(2)因为ΔS>∑δQIr/T,所以体系由初态A经不同的不可逆过程
到达终态B,其熵
的变值各不相同。
B
(3)因为ΔS=|δQR/T,所以只要初、终态一定,过程的热温商
的值就是一定的,
A
因而ΔS是一定的。
答:(1)熵是状态函数,ΔS=SB-SA即体系由A态到B态其变化
值ΔS是一定的,与
过程的可逆与否无关;而热温商是过程量,由A态到B态过程的
不可逆程度不同,则
其热温商值也不相同。产生上述错误的原因在于对熵的状态函数
性质不理解,把熵变与
B
热温商这两个本质不同的概念混为一谈。ΔS=|δQR/T,只说
明两个物理量值上相
A
等,并不是概念上等同。
(2)因为熵是状态函数不论过程可逆与否,其ΔS=SB-SA,只要始
终态一定,其值一定,
其改变值与过程无关。错误原因在于没掌握好状态函数的概念。
(3)错误在于将过程量热温商与状态函数改变量混为一谈,始终态一
定,热温商可以是
许多数值。正确的说法是:只要始、终态一定,其ΔS改变值就
一定,热温商的却随
过程的不可逆程度不同而不同,而其中可逆过程的热温商数量等
于熵变ΔS。
6.“对于绝热过程有ΔS≥0,那末由A态出发经过可逆与不可逆过程
都到达B态,这样同
一状态B就有两个不同的熵值,熵就不是状态函数了”。显然,
这一结论是错误的,
错在何处?请用理想气体绝热膨胀过程阐述之。
答:绝热可逆过程中ΔS值一定等于零,因此该过程中QR=0,体系
与环境无热交换;
而绝热不可逆过程中,QIr=0,而ΔS一定大于零.另外,从同
一始态出发经绝热
可逆过程与绝热不可逆过程达到的终态是不同。现以理想气体从
同一始态出发,分别
经过绝热可逆膨胀和绝热不可逆膨胀达到相同的压力,绝热可逆
膨胀过程向外做的功
的绝对值比绝热不可逆过程膨胀向外做的功的绝对值要大些,内
能降低得也多些,故
绝热可逆过程终态温度低于绝热不可逆过程终态温度,相同的终
态压力时,终态体积
是经绝热可逆过程的小,经绝热不可逆过程的大,两者是不同的
终态。
7.263K的过冷水结成263K的冰,ΔS<0,与熵增加原理相矛盾
吗?为什么?
答:并不矛盾,熵增加原理适用条件是孤立体系或绝热体系,而上述
过程并不具备这个特
定条件,体系与环境间有热交换,不是孤立体系或绝热体系,Δ
S可以小于零。而总
熵会大于零的。
8.“p298K过冷的水蒸气变成298K的水所放的热Qp,Qp=Δ
H,而ΔH只决定于
初、终态而与等压过程的可逆与否无关,因而便可用该相变过程
的热Qp,根据ΔS=
Qp/T(T为298K)来计算体系的熵变”这种看法是否正确?为什
么?
答:不正确,ΔS只能等于可逆过程的热温商之和,就是说可以通过
可逆过程的热温商
来计算熵变ΔS,而题述过程为不可逆恒温过程,故ΔS≠Qp/T,
不可用热温商来
计算体系的ΔS。
9.如有一化学反应其等压热效应ΔH<0,则该反应发生时一定放热,
且ΔS<0,对吗?
为什么?
答:不对。因为化学反应的热效应ΔH是指在等温等压、无非体积功
条件下,这时Qp=
ΔH,当ΔH<0,Qp<0,反应发生时放热。如果反应不是在等
温等压、无非体积
功的条件下,Q≠ΔH,ΔH<0,也不一定放热。例如:绝热容
器中H2与O2燃烧
反应,反应的等压热效应ΔH<0,但该条件下Q=0,不放热,
也不吸热。再如等
温等压下在可逆电池发生的反应,虽然ΔH<0,但Q可能大于
零。即使是放热反应,
ΔS也不一定小于零,例如:浓H2SO4溶于水,放热,但Δ
S>0。
10.根据S=lnΩ,而Ω是微粒在空间与能量分布上混乱程度的量度,
试判断下述等
温等压过程的ΔS是大于零?小于零?还是等于零?
(1)NH4NO3(s)溶于水;答:ΔS>0
++
(2)Ag(aq)+2NH3(g)—→Ag(NH3)2;答:ΔS<0
(3)2KClO3(s)—→KCl(s)+3O2(g);答:ΔS>0
(4)Zn(s)+H2SO4(aq)—→ZnSO4(aq)+H2(g)答:ΔS>0
11.物质的标准熵S(298K)值就是该状态下熵的绝对值吗?
答:不对。物质的标准熵S,298是以绝对零度0K时完美晶体的
熵值规定为零作为
基点,计算出在标准压力p298K与0K的熵值之差,因
此,S(298K)是指标
准压力p298K的熵值相对于0K时熵值的相对值,不
是绝对值。
12.(2-29)式与(2-32)式在意义上有何不同?为什么用(2-32)式判定过
程的自发性时不需
加上无非体积功的条件呢?
答:(2-29)式即dGT,p,W'=0≤0;(2-32)式即ΔGT,p≤0。(2-29)式是等
温等压无非
体积功过程的自发方向判据,它表明了在该条件下实际过程沿体
系吉布斯自由能降低
方向进行,当体系的自由能不再改变时便达到平衡态,而吉布斯
自由能增大过程是不
可能发生的。(2-32)式的“<”表示自发性,而“=”表示平衡
态,在等温等压下不
论体系是否作非体积功,自发过程总是沿吉布斯自由能降低方向
进行,直到G值不变
达到平衡态。如果W'≠0,环境做W'功,则ΔGT,p>0,不
合条件;体系做W'
功(W'绝对值小于ΔG绝对值),发生自发过程时,ΔGT,p<0;
如果W'=0,
ΔGT,p>0的过程不能发生,体系只能发生自发过程ΔG≤0,
由此可见,不论体
系是否作非体积功,(2-32)式都是等温等压下自发过程方向与限
度的判据。
13.“ΔGT,p,W'=0≤0说明ΔG<0的过程只能在T,p一定,且W'=0
的条件下才能发生”,
这种说法对吗?为什么?
答:不对。ΔGT,p,W'=0<0,说明在T,p一定时,无非体积功的条
件下ΔG<0的过程
可以自发进行,但该过程并非只有在W'=0条件下发生,有非
体积功W'时,只要
所作非体积功的绝对值小于吉布斯自由能的降低值条件下也能
发生。
14.关于公式ΔGT,p=WR'的下列说法是否正确?为什么?
(1)“体系从A态到B态不论进行什么过程ΔG值为定值且
一定等于W'”;
(2)“等温等压下只有体系对外做非体积功时G才降低”;
(3)“G就是体系中能做非体积功的那一部分能量”。
答:(1)不对,只有在T,p一定的可逆过程中,体系的ΔGT,p才等
于WR';在其它条
件下,不可逆过程中ΔGT,p不等于WR'。
(2)不对,体系的吉布斯自由能是状态函数,假如GB<GA,则
由A至B的等温等压过
程是自发的,但不论在实际过程中体系是否对外作非体积功,体
系自由能都是降低的。
(3)不对,只有在等温等压条件下,吉布斯自由能的降低值才是
作非体积功的能值。
15.为什么等温等压下化学反应的自发性不能用ΔH作判据;但有些
情况下用ΔH作判据,
又能得到正确的结论?
答:等温等压下化学反应自发性的判据是用ΔG,而不是用ΔH,但
由于有ΔG=ΔH-
TΔS的关系,因此对|ΔH|>|TΔS|的反应,用ΔH作判
据所得到的结论与用
ΔG判据是一致的,在这种条件下可以用ΔH作为判据;另外,
对于ΔH>0,ΔS<
0或ΔH<0,ΔS>0的反应,用ΔH判据与ΔG判据也是一
致的,因此也可用
ΔH来作为判据。
16.对于ΔH>0,ΔS>0而在常温下不能自发进行的反应改变温度
能否使反应自发进
行?为什么?
答:能够。依据ΔG=ΔH-TΔS公式,TΔS随温度的升高而增大,
提高反应温度使
TΔS>ΔH,从而ΔG<0,反应就能自发进行了。
17.一般固体分解产生气体时,常常大量吸热,试比较这类固体在低
温与高温下的稳定性。
答:固体分解产生气体的反应吸热,ΔH>0,由于产生气体,ΔS
>0,随着温度升高,
TΔS增加,ΔG=ΔH-TΔS,随温度升高,反应的ΔG降
低,所以高温下固体
的热温定性较差。
18.为什么ΔU=∫TdS-∫pdV适用于单组分均相封闭体系的任何过
程?这是否意味着对
这种简单的热力学体系的任何过程∫TdS及∫pdV都分别代表
热与功呢?
答:对dU=TdS-pdV公式,对一定量单组分均相物系,只要初、
终态相同,不论过程可
逆与否都能适用,这因为单组分均相物系不会发生化学变化和相
变化,只是p,V,T
的变化,同时由于上式中,U、S、V是状态函数,其变化值与
过程无关,因此该式
适用于任何过程,但是只有在可逆过程中∫TdS才是体系所吸
的热。而-pdV才是物
系所作的体积功。
19.根据δQ=dU+pdV及dU=(U/V)TdV+(U/T)VdT
用全微分判别式证明Q
不是状态函数。
答:全微分的一个重要性质是二阶微商与其求导的次序无关(即尤拉
关系式)。
dU代入δQ,并把(U/T)V=T(p/T)V-p代入,
δQ=(U/T)VdT+[(U/V)T+p]dV中,那么:
[(U/T)V/V]T≠[(U/V)T/T]V+(p/T)V
所以Q不具有全微分性质。
20.分别讨论定压下升高温度及定温下增大压力时以下过程的ΔG
值如何变化?
(1)沸点下液体气化为蒸气;
(2)凝固点下液体凝为固体(如Vm(l)>Vm(s))。
答:依据(G/T)p=-ΔS,由ΔS值即可判定在定压下ΔG对
T的变化率的。
当ΔS>0时,则(G/T)p<0,随温度升高,ΔG值减小。
当ΔS<0时,则
(G/T)p>0,随温度升高,ΔG值增大;依据(G/p)T
=ΔV,由ΔV值
可判定在定温下,ΔG对压力p的变化率。当ΔV>0时,则(
/p)T>0,
定温下,随压力增大,ΔG增加。
(1)在沸点下液体气化为蒸气,ΔS>0,恒压下升高温度气化Δ
G减小,蒸发更
易进行;而ΔV>0,定温下增加压力,ΔG增大,蒸发不易进
行。
(2)液体凝固成固体,由于Vm(l)>Vm(s),ΔV<0,定温下加压
凝固过程ΔG
降低,凝固更易进行。而ΔS<0,定压下升温,ΔG增大,凝固
不易进行。
3
21.如果在1000cm水中加入1molH2SO4所得溶液的体积为V,
则该溶液中H2SO4的
偏摩尔体积是V-1000cm3,对吗?
答:不对。溶液体积为:V=(1000/18)VH2O+VH2SO4,故H2SO4的
偏摩尔体积为
VH2SO4=V-(1000/18)VH2O。因溶液中水的偏摩尔体积VH2O≠18
cm3,水的体
3
积也不再是1000cm,故VH2SO4≠V-1000。
22.“f=p的状态就是真实气体的标准态”对吗?为什么?
答:不对。真实气体的标准是指定f=p101325pa,并且其性质
又符合理想气体行为
的状态,即f=p1的假想态,而真实气体f=p(即
101325pa)的状态,逸
度系数γ≠1,因此不是标准态。
3
.如果1000cm水中加入1mol的H2SO4,溶液的体积增加ΔV,
则H2SO4的偏摩尔的数
值就是ΔV吗?为什么?
答:不是,题中的ΔV值是溶液变化的体积,不是H2SO4的偏摩尔
体积,因为偏摩尔体积
的定义是V(H2SO4)=(V/n)T,p,n1。可以理解为无限大量的
H2SO4水溶液中,加入
1molH2SO4所引起溶液体积的变化值ΔV,本题条件不是无限
大量体系,因此ΔV
不是H2SO4的偏摩尔体积。
2.当溶液浓度趋向饱和时,溶质的微分溶解热与摩尔积分溶解热各
趋向何值?当浓度趋
向无限稀释时,又将怎样?
答:当浓度趋向饱和时,溶质的微分溶解热趋向于零,而摩尔积分溶
解热趋向于某一定值。
当浓度趋向无限稀释时,微分溶解热等于溶质的积分溶解热曲线
在原点时的斜率。而
积分溶解热倾向于零,但是它的摩尔积分溶解热趋向一个定值。
3.(3-6)式与(3-7)式各表明怎样的物理意义?
**
答:(3-6)式为:ΔHsol=Hslu-[nBHB+(1/MA)×HA],其意义表明该
体系的积分溶
解热等于其混合后(终态)与混合前(初态)的焓差值;
(3-7)式为:(Hsol/nB)T,p,n(B)=HB-HB,m表明溶质B的微
分溶解热等于B
在溶液中的偏摩尔焓与其纯态的摩尔焓之差。
4.拉乌尔定律与亨利定律有何异同?
答:相同点,两者意义均表明溶液中组分的蒸气压正比于其在溶液中
的浓度,因此两者的
数学形式相同;不同点,拉乌尔定律适用于理想稀溶液的溶剂,
公式中的比例常数为
*
该溶剂A在所述温度时的纯A的蒸气压pA,亨利定率适用
于理想稀溶液中的溶质,
亨利定律的比例常数为实验值的经验常数,见下列:
Kx=limpB/XB;Km=limpB/mB;KC=limpB/CB
x→0m→0c→0
亨利常数只有数学上的极限意义无其它物理意义。使用亨利定律
时,其浓度单位可按
需要应用x、m或c,并且亨利定律的形式也按需要可写成pB
=RxXB,xB=KxpB等
形式,使用的溶度单位不同,亨利常数也不同。
5.亨利常数对每一种物质是否是一个定值,它会随浓度、温度、溶
剂性质而变吗?
答:亨利常数对每一种物质不是一个定值,对不同的物质,在不同的
温度与溶剂有不同的
亨利常数值,对同一温度与同一溶剂,其亨利常数不随浓度的变
化而变化,但随温度
的变化而变化。另外,亨利常数随使用的浓度单位不同而数值不
同,但不同浓度单位
的亨利常数之间可相互转化换算。
6.何谓溶剂,何谓溶质,两者各服从怎样的规律性?
答:溶剂与溶质的划分具有相对的意义。对于液体溶于液体形成的溶
液,把数量多的组分
叫溶剂,数量少的组分叫溶质。对于气体、固体溶于液体形成的
溶液,气体、固体叫
溶质,液体叫溶剂。在理想稀溶液中溶剂服从拉乌尔定律,溶质
服从亨利定律;理想
混合物中,拉乌尔定律与亨利定律是一回事,各组分在任何浓度
下都服从拉乌尔定律。
7.Kx、Km与KC三个实验值是否存联系?有人认为其间存在的关系
为:
Kx=Km/MA=KρA/MA,你相信否?
答:由于xB、mB、cB三种浓度单位之间存在联系,故Kx、Km与
KC之间必然存在
联系。在稀溶液的条件下,三种浓度单位的亨利常数之间存在题
中给出的关系式。
8.标准态具有怎样的意义,溶剂与溶质的标准态有何异同?如果溶
质也选用摩尔分数xB
为浓度单位,那么它的标准态是怎样一个状态?(提示:教材上图
3--3中Kx点)
答:物质的标准态一般是计算该物质在混合物中,或在溶液中的化学
势相对值时而选取的基准态。
*
液态理想混合物中任一组分组分B的标准态为μB=μB(l,T,
p)。稀溶液中溶剂A的
*
标准态为μA(T)=μA(l,T,p);溶质B的标准态为亨利定
律直线的延长线上某一状态,
其浓度为1个浓度单位(xB=1,mB=1或cB=1,视所用的浓度单
位而定)并用其活度系数
γB(γx,γm或γC)亦为1的一个假想态。如果以xB表示浓度,
标准态是xB=1,并且仍符合
亨利定律的假想态,即图3-3中的Kx点。
*
9.μB(l,T,p)、μB(l,T,p)、μB(l,T)、μB(g,T)四个符
号的意义有何不同?
答:μB(l,T,p)为在温度T,压力p时液态混合物中组分B的化
学势。
*
μB(l,T,p)为在温度T,压力p时液态纯B的化学势;
μB(l,T)为温度T,标准压力p
B的标准态化学势;
μB(g,T)为温度T,标准压力p
分B的标准化学势。
10.下列三者何者正确(1)μB,m(l)=μB,C(l);(2)μB,m=μ
B,C+RTlnKC;
(3)μB,C(l)-μB,m(l)=RTln(KB,C/kB,m)。
答:第三式正确,该式指出了理想稀溶液中组分B二种不同浓度单
位m与c的标准
的化学势之差。
11.根据公式(3-25)与(3-26),当活度aB,m或aB,C,等于1时的
状态就是标准态,
这个想法是否对?若将图3-5中通过对角线m=1的点作一
水平线与实线相交的点,
其化学势为多少?是否是标准态?
答:(3-25)式:μB(l,T)=μB,m(l,T)+RTlnaB,m;
(3-26)式:μB(l.T)=μB,C(l,T)+RTlnaB,C;aB,m或aB,C等
于1的点,该状态
不一定是标准态,只有活度系数也是γ=1才是标准态。
图3-5中,通过对角线m=1的点作一水平线与实线相交的
点其化学势的大小与标
准态化学势相等,但不是标准态。
12.为什么稀溶液的沸点升高、冰点下降、渗透压以及溶剂蒸气压下
降称为依数性。引起
依数性的最基本原因是什么?
答:上述四种性质的数值只与溶于溶剂中溶质的粒子数多少有关,而
与溶质本身的性质无
关,故称为依数性。依数性产生的主要原因是由于溶质溶入后引
起溶剂化学势降低。
13.在溶剂中一旦加入溶质就能使溶液的蒸气压降低,沸点升高,冰
点降低并且具有渗透
压。这句话是否准确?为什么?
答:不一定准确。如果加入的溶质是挥发性的,并且挥发性比溶剂大,
则溶液的蒸气压增
加,沸点下降;如果溶质是非挥发性的,或者溶质的挥发性小于
溶剂,则题述结果正
确。
14.如果在水中加入少量的乙醇,则四个依数性将发生怎样的变化,
为什么有这样的变化?
如果加NaCl、CaCl2则又怎样?
答:水中加入乙醇后,溶液蒸气压上升,沸点下降。冰点仍是下降,
渗透压仍存在。
这是由于乙醇是挥发性的,并且挥发性又很大。但乙醇水溶液凝
固时,析出的固态仍
是纯冰。如果溶入NaCl,由于每个分子完全电离成二个粒子,
则蒸气压降低,沸点
升高,所呈依述性数值加倍,如溶入CaCl2,则近似增加三倍。
15.某一定浓度的稀溶液,它的四个依数性间存在着怎样的简单定量
关系?
*
答:ΔTb/Kb=ΔTf/Kf=πVA/(RTMA)=(mpA/pA)/MA。
16.运用公式(3-40)时,从溶液中析出的固体是否必须是固态纯溶
剂,为什么?
答:(3-40)式为:ΔTf=KfmB,条件是必须固态纯溶剂,因推导该式
的基础是溶液中
溶剂A的化学势与固态纯溶剂的化学势相等。
17.你怎样从微观上理解只有理想混合物中的每一种组分才能在全
组成范围内服从拉
乌尔定律。
答:因为理想混合物中每一种组分粒子与其周围异种组分粒子之间的
相互作用,等同于
该组分处于纯态的情况(即等于同种粒子之间的相互作用),因
此理想混合物在全组
成范围内服从拉乌尔定律。
18.溶液中的组分与混合物中的组分有何区别?
答:溶液可以是气体、固体溶于液体形成的,气体、固体称为溶质,
液体称为溶剂,而混
合物中必须是两种液体混合而得的。用热力学处理时,混合物中
任一组分化学势公式
都服从或近似服从拉乌尔定律,而溶液中的溶剂按拉乌尔定律处
理,溶质按亨利定律
处理,因此两者运用不同的处理过程。
19.理想气体与理想液态(或固态)混合物的微观粒子间的相互作用有
何区别?
答:理想气体的分子间不存在相互作用,而理想混合物的粒子间存在
相互作用,不过是同
种粒子还是异种粒子之间的作用力一样大。
20.“理想稀溶液与理想混合物属于一个概念”,这句话你以为如何?
答:理想稀溶液中溶质完善地服从亨利定律,溶剂服从拉乌尔定律,
两者的标准态具有不
同的含义。而理想混合物中任一组分服从拉乌尔定律,任一组分
的标准态具有相同的
含义。因此两者不属于同一概念。
21.你能说清楚(3-17)式中每一项的物理意义吗?
*
答:(3-17)式:μA(l,T,p)=μA(l,T,p)+RTlnxA≈μA(l,T)
+RTlnxA
μA(l,T,p)是液态溶液中组分A在T温度,压力p时的化
*
学势,μA(l,T,p)是
液态纯A在温度T,压力p时的化学势,μA(l,T)是A在
温度T,标准压力p
时的标准态化学势。由于压力对液态化学势影响很小,μ*(l,T,
p)近似等于μ(l,T)。
RTlnXA是溶液中组分A较纯A的化学势的下降值。
22.理想混合物与非理想混合物在微观结构与宏观性质上有何不
同?
答:理想混合物的微观结构特征是同种粒子或异种粒子之间作用力相
等,而非理想混合物
便不具理想混合物的微观特征是同种粒子或异种粒子之间作用
力不相等。理想混合物
的宏观特征为ΔV(混合)=0,ΔU(混合)=0,ΔH(混合)=0,
ΔCp(混合)=0,非理
想混合物不具有上述几个特征。
23.试比较组分B的化学势在理想混合物与非理想混合物的公式中
有何同异?
答:在理想混合物中为μB(T)=μB(T)+RTlnXB
在非理想混合物中μB(T)=μB(T)+RTlnaB
相同点:(1)数学形式相同;(2)标准态相同;不同点:理想混合
物中直接引用浓度xB而
非理想混合物须引用活度aB,活度aB=γBXB,γB为活度系数。
24.下列三个式子在一般压力下是否都正确,为什么?
*
μB(s,T)≈μB(s,T,p)
*
μB(l,T)≈μB(l,T,p)
*
μB(g,T)≈μB(g,T,p)
答:前两者比较正确,因这二者的μB与μB之差为Δμ=VS(p
-p)或Δμ=
VL(p-p),该值与μB相比较甚小可忽略不计,故这两式成
立,第三式Δμ=
Vg(p-p),因Vg较VS或Vl相差甚大,Δμ不能忽略不计,故
第三式不能成立。
第四章化学平衡
1.对于一个封闭体系,其化学反应自由能ΔGm即(G/)T,p是
否随反应的进度而变
化?为什么?
答:对于一个封闭体系,其化学反应自由能ΔGm即(G/)T,p
随反应的进度而变化。
在等温等压条件下,当反应物自由能的总和不等于产物自由能总
和时,反应总是自发地
向自由能减小的方向进行。也就是体系中自由能G随着反应进度
ξ的变化而降低,因此,
ΔGm即(G/)T,p随ξ的变化而改变。另一方面,ΔGm=(
G/)T,p=∑νBμB,
由于μB与组成xB有关,封闭体系中,反应物与产物混合在一起,
随反应进度ξ的改变,
体系中组成发生变化,μB改变,因此ΔGm也发生变化。
2.如果知道某一反应体系在一定温度与压力下,其ΔGm<0,则体
系中的反应物是否能全
部变成产物?
答:当温度、压力一定时,反应体系的ΔGm<0,则正向反应能自
发进行。
(1)若为封闭体系,ΔGm=(G/)T,p=∑νBμB是随ξ变化而
变化的,也就是随着反
应的进行,反应物数量减少,产物数量增多,反应物化学势总
和不断减小,产物的化
学势总和不断增大,最终达到相等。此时ΔGm=0,反应达到
平衡。反应物与产物的
数量不随时间而改变,这时反应物与产物共存,故反应不能进
行到底。
(2)若为敞开体系,有些反应ΔGm=∑νBμB不随ξ变化而变化,
反应物化学势之和总
是大于产物化学势之和,因此反应能进行到底,例如:标准压
力下,900℃时,在空
气中煅烧石灰石反应:CaCO3(s)—→CaO(s)+CO2↑,就能进
行到底。
3.对于封闭体系中的匀相反应cC+dD—→gG+hH
(a)如果gμG+hμH<cμC+dμD
(b)如果gμG+hμH>cμC+dμD
(c)如果gμG+hμH=cμC+dμD
(d)如果gμG+hμH=cμC+dμD
以上四种况,各表明反应体系存在什么情况?
答:(a)正向反应能自发进行(b)逆向反应能自发进行
(c)参加反应的物质都处于标准态时达到化学平衡,不是处于
标准态时,不一处
于平衡态。
(d)反应处于平衡状态。
4.对于一个等温等压下的封闭反应体系,因其ΔG-RTLnK
故反应体系的标准态
即是平衡态,这个概念是否正确?如果体系的情况为ΔG0,
则体系是否是平衡态?
答:这个概念不正确。ΔGK
的状态,ΔG
与产物都处于标准态的自由能之差,K
时反应组分的活度积,
ΔGRTLnKG与K
系,并没有物理意义上联系,
更没有表明是同一状态。当体系中ΔG0,体系不一定处于
平衡态,因为ΔG0,
体系的ΔGm=ΔGRTnQ=RTLnQa,只要活度商Qa
≠1,则ΔGm≠0,体系就不是
化学平衡态。只有当体系的Qa=1,或反应体系中各反应物质都
处于标准态,ΔGm=RTLnQa=0,
或ΔGm=ΔG0,体系才处于平衡态,这仅是一种特殊的情
况。
5.为什么化学反应一定存在着一个确定的平衡态?反应体系的平衡
条件是∑iμiνi=0
还是Ka?
答:对于封闭体系来说,化学反应一定存在一个确定的平衡态。因为
封闭体系在一定条件
下,ΔGm=(G/)T,p=∑νBμB随着反应进度ξ的变化而
改变,正方向进行时,
反应物浓度减小,反应物化学势之和降低,产物浓度增大,产物
化学势之和升高,最
后必然导致反应物化学势之和与产物化学势之和相等,处于反应
物与产物共存一起,
其浓度不随时间而改变的平衡态。其根本原因是产物于反应物混
和在一起,由于混合,
熵增大,自由能降低,使体系自由能随反应进度的变化曲线上有
一个极小值,即平衡时,
自由能最低。因此,封闭体系反应一定存在一个确定的平衡态。而
对于敞开体系,可
能不存在平衡态。反应体系平衡的条件是∑iνBμB=0,而不是
Ka。
6.“某一反应的平衡常数是一个确定不变的常数。”这句话是否恰当。
答:不恰当。平衡常数会随某些反应的条件(如温度)变化而变化。
7.下述二个反应的平衡常数有何区别(包括单位),ΔG又是怎样
的?
AB及BAnA(A)n与nA
(A)n
答:AB与BA的平衡常数及其量纲都互为倒数。两者Δ
G
相反;nA(A)n与nA(A)n前者的平衡常数和量
纲是后者的平方,
前者的ΔG是后者的二倍。
8.何为标准生成自由能?为什么对于非挥发性物质ΔG,f≈ΔGm,
f,而对于气态物
质两者却相很大?
答:规定标准态下稳定单质生成自由能为零,由标准态下的稳定单质
生成标准态下1mol
的化合物所引起自由能的改变值称为该化合物的摩尔标准生成自
由能ΔG,f;根
fGp
据(G/p)T=ΔVm,|dΔG=|ΔVdp,ΔfG
ΔfGm=ΔV(pp),
fGmp
*
则ΔfGfGm=ΔVm(pp),对于非挥发性物质ΔVm很
小,因此:
*
ΔVm(pp)项与ΔfGm相比,可忽略不计,ΔfGfGm
而对于气态物质ΔVm
*
数值较大,ΔVm(pp)项不能忽略不计,因此ΔfGΔfGm
相差较大。
9.为什么对于计算液相反应的ΔGm,在压力不甚高的条件下,也可
*
以用μB来代替μB?
答:μB(L)=μB(T)+RTLnaB
p
p
*
∵μB(l,T,p)=μB(l,T,p)+|VBdp,对液体体系,其中|
VBdp=VB(p-p)
p
p
当压力p不甚高条件下,这项值很小,仅几个焦耳,而μB是几
十个千焦耳,相比,
**
因此可忽略不计,μB≈μB,可用μB代替μB,写成μB(L)
*
=μB(T)+RTLnaB。
10.气相反应的KKp、KC、Kx及Kf之间什么区别与联系,各
具怎样的量纲?
-∑ν∑ν
答:(1)对于理想气体,KKp(p),Kp=K(p)=Kx(p)
∑ν∑ν
=KC(RT),
KKp、KC仅是温度的函数,Kx是T、p的函数。K
Kx无量纲,Kp
∑ν-3∑ν
量纲为(pa),KC量纲为(mol/dm),如∑ν=0,均无量
纲。
∑ν
(2)对于实际气体,Kf=KpKr,Kf=K(p),KKf仅是
温度的函数,Kp
∑ν
是T、p的函数,KKx无量纲,Kf、Kp量纲为(pa),∑
ν=0,则均无量
纲。
11.“凡是反应体系便一定能建立化学平衡”,这个概念是否一定正确,
试举例说明之。
答:不一定正确。如对于敞开体系,许多反应能进行到底,不能建
立化学平衡。例如,
1000℃时在空气中煅烧石灰:CaCO3(s)—→CaO(s)+CO2(g),
这个反应就能进行到
底,不能建立起化学平衡。
12.怎样从等温方程式得出等压方程式?这两个方程各有几种形
式?各说明什么问题?
答:(1)等温方程ΔGm=-RTLnKRTLnQa,如果体系中每一种
组分都处于标准态时,
则上式便变为ΔGRTLnK
将上式变形后,对温度
求微商可导出等压方程:ΔG/T=-RLnK
[(ΔG/T)/T]p=[-R(LnK)/T]p=-R[(LnK
)/T]p
2
而吉--赫公式:[(ΔG/T)/T]p=-ΔH/T
2
∴[(LnK)/T]p=ΔH/RT即为等压方程式
(2)等温方程形式有:ΔGm=ΔGRTLnQa
ΔGRTLnKRTLnQa=RTLn(Qa/K)等。
2
等压方程除上面的微分式(Lnk/T)p=ΔH/RT
外,还有:
LnKH/RT+C
Ln[K(T2)/K(T1)=ΔH(T2-T1)/RT1T2等形式。
(3)等温方程说明反应进行的方向和限度(平衡)。等压方程式说明
温度对K
影响,即温度对化学平衡的影响,以及不同温度时K(T)
的计算。
13.为什么反应平衡体系中充入惰性气体与减低体系的压力等效?
答:因为在等压下,体系的总压不变情况下,在平衡体系中一但充入
惰性气体,体系
中气体总摩尔数增加,反应组分的摩尔分数减少,则必然降低反
应体系各反应组分的
分压力。于是也降低了反应组分的总压,因此在总压不变条件下,
充入惰性气体与降
低体系的压力对平衡的影响等效。如果不是总压不变条件下,若
是等容条件下,充入
惰性气体与降压不等效。第五章相平衡
1.图5-2中,α曲面与β曲面相交的abd线是一条等化学势
的曲线。这句话的含义
是什么?
答:abd曲线在Tp平面上的投影为a'd'b',该线上的任意一点,
在其指定的温度和压
力下,两相化学势相等,即α与β二相处于平衡状态。
2.西藏高原的气压为65.8Kpa,为什么在西藏高原用一般锅子不能
将生米烧成熟饭?
答:查不同温度下水的饱
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 防雷设施安装维护合同三篇
- 化妆品行业保安工作总结
- 儿童游乐设施设计美工工作总结
- 林业行业美工的森林保护
- 风险防范工作总结
- 【八年级下册地理粤教版】第8章 珠江三角洲 单元测试
- 本科生毕业论文答辩记录表
- 2025届扬州市高三语文(上)1月质量调研试卷及答案解析
- 创新成果知识产权合同(2篇)
- DB33T 2188.4-2019 大型赛会志愿服务岗位规范 第4部分:礼宾接待志愿服务
- 2024版企业股权收购并购重组方案合同3篇
- 2024AIGC创新应用洞察报告
- 统编版2024-2025学年三年级上册语文期末情景试卷(含答案)
- 2024北京通州初三(上)期末数学试卷(含答案解析)
- 市场营销习题库(附参考答案)
- 2024年马拉松比赛项目合作计划书
- 2024年演出经纪人资格《思想政治与法律基础》考前必刷必练题库500题(含真题、必会题)
- 苗圃购销合同范本
- 《二十四节气融入幼儿园教育活动的个案研究》
- 麻醉与舒适医疗
- GB/T 44899-2024商品条码散装和大宗商品编码与条码表示
评论
0/150
提交评论