江西省上饶市2023-2024学年高一数学第一学期期末达标检测模拟试题含解析_第1页
江西省上饶市2023-2024学年高一数学第一学期期末达标检测模拟试题含解析_第2页
江西省上饶市2023-2024学年高一数学第一学期期末达标检测模拟试题含解析_第3页
江西省上饶市2023-2024学年高一数学第一学期期末达标检测模拟试题含解析_第4页
江西省上饶市2023-2024学年高一数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省上饶市2023-2024学年高一数学第一学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为锐角,为钝角,,则()A. B.C. D.2.已知角的终边经过点,则的值为A. B.C. D.3.已知,,则A. B.C. D.4.已知是定义在R上的单调函数,满足,且,若,则a与b的关系是A. B.C. D.5.已知,,,则的大小关系A. B.C. D.6.已知函数的图像是连续的,根据如下对应值表:x1234567239-711-5-12-26函数在区间上的零点至少有()A.5个 B.4个C.3个 D.2个7.直线L将圆平分,且与直线平行,则直线L的方程是A.BC.D.8.已知函数,若关于的方程有四个不同的实数解,且,则的取值范围是()A. B.C. D.9.设,,若,则ab的最小值是()A.5 B.9C.16 D.2510.若,则()A. B.-3C. D.3二、填空题:本大题共6小题,每小题5分,共30分。11.已知,求________12.若数据的方差为3,则数据的方差为__________13.等腰直角△ABC中,AB=BC=1,M为AC的中点,沿BM把△ABC折成二面角,折后A与C的距离为1,则二面角C—BM—A的大小为_____________.14.在中,已知是x的方程的两个实根,则________15.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是______答案】16.化简求值(1)化简(2)已知:,求值三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在棱长都相等的正三棱柱ABC-A1B1C1中,D,E分别为AA1,B1C的中点.(1)求证:DE平面ABC;(2)求证:B1C⊥平面BDE.18.计算:(1);(2)19.某地区每年各个月份的月平均最高气温近似地满足周期性规律,因此第个月的月平均最高气温可近似地用函数来刻画,其中正整数表示月份且,例如表示月份,和是正整数,,.统计发现,该地区每年各个月份的月平均最高气温基本相同,月份的月平均最高气温为摄氏度,是一年中月平均最高气温最低的月份,随后逐月递增直到月份达到最高为摄氏度.(1)求的解析式;(2)某植物在月平均最高气温低于摄氏度的环境中才可生存,求一年中该植物在该地区可生存的月份数.20.已知.(1)在直角坐标系中用“五点画图法”画出一个周期内的图象.(要求列表、描点)(2)求函数的最小正周期、对称中心、对称轴方程.21.计算下列各式的值.(1);(2).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用平方关系和两角和的余弦展开式计算可得答案.【详解】因为为锐角,为钝角,,所以,,则.故选:C.2、C【解析】因为点在单位圆上,又在角的终边上,所以;则;故选C.3、C【解析】由已知可得,故选C考点:集合的基本运算4、A【解析】由题意,设,则,又由,求得,得t值,确定函数的解析式,据此分析可得,即,又由,利用换底公式,求得,结合对数的运算性质分析可得答案【详解】根据题意,是定义在R上的单调函数,满足,则为常数,设,则,又由,即,则有,解可得,则,若,即,则,若,必有,则有,又由,则,解可得,即,所以,故选A【点睛】本题主要考查了函数的单调性的应用,以及对数的运算性质的应用,其中解答中根据题意,设,求得实数的值,确定出函数的解析式,再利用对数的运算性质求解是解答的关键,着重考查了分析问题和解答问题的能力,以及换元思想的应用,属于中档试题5、D【解析】利用指数函数与对数函数的单调性即可得出【详解】∵0<a=0.71.3<1,b=30.2>1,c=log0.25<0,∴c<a<b故选D【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题6、C【解析】利用零点存在性定理即可求解.【详解】函数的图像是连续的,;;,所以在、,之间一定有零点,即函数在区间上的零点至少有3个.故选:C7、C【解析】圆的圆心坐标,直线L将圆平分,所以直线L过圆的圆心,又因为与直线平行,所以可设直线L的方程为,将代入可得所以直线L的方程为即,所以选C考点:求直线方程8、D【解析】画出函数的图象,根据对称性和对数函数的图象和性质即可求出【详解】可画函数图象如下所示若关于的方程有四个不同的实数解,且,当时解得或,关于直线对称,则,令函数,则函数在上单调递增,故当时故当时所以即故选:【点睛】本题考查函数方程思想,对数函数的性质,数形结合是解答本题的关键,属于难题.9、D【解析】结合基本不等式来求得的最小值.【详解】,,,,当且仅当时等号成立,由.故选:D10、B【解析】利用同角三角函数关系式中的商关系进行求解即可.【详解】由,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由条件利用同角三角函数的基本关系求得和的值,再利用两角和差的三角公式求得的值【详解】∵,∴,,,∴,∴故答案为:12、12【解析】所求方差为,填13、【解析】分别计算出的长度,然后结合二面角的求法,找出二面角,即可.【详解】结合题意可知,所以,而发现所以,结合二面角找法:如果两平面内两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角,故为所求的二面角,为【点睛】本道题目考查了二面角的求法,寻求二面角方法:两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角14、##【解析】根据根与系数关系可得,,再由三角形内角和的性质及和角正切公式求,即可得其大小.【详解】由题设,,,又,且,∴.故答案为:.15、【解析】设出该点的坐标,根据题意列方程组,从而求得该点到原点的距离【详解】设该点的坐标是(x,y,z),∵该点到三个坐标轴的距离都是1,∴x2+y2=1,x2+z2=1,y2+z2=1,∴x2+y2+z2,∴该点到原点的距离是故答案为【点睛】本题考查了空间中点的坐标与应用问题,是基础题16、(1)(2)【解析】(1)利用诱导公式化简即可;(2)先进行弦化切,把代入即可求解.【小问1详解】.【小问2详解】因为,所以.所以.又,所以.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明过程见解析;(2)证明过程见解析.【解析】(1)根据面面平行的判定定理,结合线面平行的判定定理、面面平行的性质进行证明即可;(2)根据正三棱柱的几何性质,结合面面垂直的性质定理、线面垂直的判定定理、面面平行的性质定理进行证明即可.【小问1详解】设G是CC1的中点,连接,因为E为B1C的中点,所以,而,所以,因为平面ABC,平面ABC,所以平面ABC,同理可证平面ABC,因为平面,且,所以面平面ABC,而平面,所以DE平面ABC;【小问2详解】设是的中点,连接,因为E为B1C的中点,所以,而,所以,由(1)可知:面平面ABC,平面平面,平面平面,因此,在正三棱柱ABC-A1B1C1中,平面平面ABC,而平面平面ABC,因为ABC是正三角形,是的中点,所以,因此平面,而平面,因此,而,所以,因为正三棱柱ABC-A1B1C1中棱长都相等,所以,而E分别为B1C的中点,所以,而平面BDE,,所以B1C⊥平面BDE.18、(1);(2).【解析】(1)根据指数幂的运算法则,以及根式与指数幂的互化公式,直接计算,即可得出结果;(2)根据对数的运算法则,直接计算,即可得出结果.【详解】(1)原式=(2)原式==19、(1),,为正整数(2)一年中该植物在该地区可生存的月份数是【解析】(1)先利用月平均气温最低、最高的月份求出周期和及值,再利用最低气温和最高气温求出、值,即得到所求函数的解析式;(2)先判定函数的单调性,再代值确定符合要求的月份即可求解.【小问1详解】解:因为月份的月平均最高气温最低,月份的月平均最高气温最高,所以最小正周期.所以.所以,.因为,所以.因为月份的月平均最高气温为摄氏度,月份的月平均最高气温为摄氏度,所以,.所以,.所以的解析式是,,为正整数.【小问2详解】解:因为,,为正整数.所以在区间上单调递增,在区间上单调递减.因为某植物在月平均最高气温低于摄氏度的环境中才可生存,且,,所以该植物在1月份,2月份,3月份可生存.又,所以该植物在11月份,12月份也可生存.即一年中该植物在该地区可生存的月份数是.20、(1)见解析;(2)见解析【解析】(1)列表、描点即可用五点画图法作出函数图像;(2)结合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论