辽宁省建平县高级中学2023-2024学年高一上数学期末综合测试试题含解析_第1页
辽宁省建平县高级中学2023-2024学年高一上数学期末综合测试试题含解析_第2页
辽宁省建平县高级中学2023-2024学年高一上数学期末综合测试试题含解析_第3页
辽宁省建平县高级中学2023-2024学年高一上数学期末综合测试试题含解析_第4页
辽宁省建平县高级中学2023-2024学年高一上数学期末综合测试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省建平县高级中学2023-2024学年高一上数学期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知集合,.则()A. B.C. D.2.《九章算术》成书于公元一世纪,是中国古代乃至东方的第一部自成体系的数学专著.书中记载这样一个问题“今有宛田,下周三十步,径十六步.问为田几何?”(一步=1.5米)意思是现有扇形田,弧长为45米,直径为24米,那么扇形田的面积为A.135平方米 B.270平方米C.540平方米 D.1080平方米3.在下列函数中,既是奇函数并且定义域为是()A. B.C. D.4.已知A(3,1),B(-1,2),若∠ACB的平分线方程为y=x+1,则AC所在的直线方程为()A.y=2x+4 B.y=x-3C.x-2y-1=0 D.3x+y+1=05.已知向量,,则下列结论正确的是()A.// B.C. D.6.定义在上的奇函数以5为周期,若,则在内,的解的最少个数是A.3 B.4C.5 D.77.下列函数中,图象关于坐标原点对称的是()A.y=x B.C.y=x D.8.数列的前项的和为()A. B.C. D.9.一个多面体的三视图如图所示,则该多面体的表面积为()A.21+ B.18+C.21 D.1810.已知定义在上的奇函数满足,且当时,,则()A. B.C. D.11.已知,,则A. B.C. D.12.设则()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.的化简结果为____________14.已知半径为的扇形的面积为,周长为,则________15.函数定义域是____________16.已知扇形的圆心角为,面积为,则该扇形的弧长为___________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知在半径为的圆中,弦的长为.(1)求弦所对的圆心角的大小;(2)求圆心角所在的扇形弧长及弧所在的弓形的面积.18.设集合,,求,19.一只口袋装有形状大小都相同的只小球,其中只白球,只红球,只黄球,从中随机摸出只球,试求(1)只球都是红球的概率(2)只球同色概率(3)“恰有一只是白球”是“只球都是白球”的概率的几倍?20.(1)已知角的终边过点,且,求的值;(2)已知,,且,求.21.已知定义域为的奇函数.(1)求的值;(2)用函数单调性的定义证明函数在上是增函数.22.已知函数求的最小正周期以及图象的对称轴方程当时,求函数的最大值和最小值

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】直接利用交集的运算法则即可.【详解】∵,,∴.故选:.2、B【解析】直接利用扇形面积计算得到答案.【详解】根据扇形的面积公式,计算扇形田的面积为Slr45270(平方米).故选:B.【点睛】本题考查了扇形面积,属于简单题.3、C【解析】分别判断每个函数的定义域和奇偶性即可.【详解】对A,的定义域为,故A错误;对B,是偶函数,故B错误;对C,令,的定义域为,且,所以为奇函数,故C正确.对D,的定义域为,故D错误.故选:C.4、C【解析】设点A(3,1)关于直线的对称点为,则,解得,即,所以直线的方程为,联立解得,即,又,所以边AC所在的直线方程为,选C.点睛:本题主要考查了直线方程的求法,属于中档题.解题时要结合实际情况,准确地进行求解5、B【解析】采用排除法,根据向量平行,垂直以及模的坐标运算,可得结果【详解】因为,所以A不成立;由题意得:,所以,所以B成立;由题意得:,所以,所以C不成立;因为,,所以,所以D不成立.故选:B.【点睛】本题主要考查向量的坐标运算,属基础题.6、D【解析】由函数的周期为5,可得f(x+5)=f(x),由于f(x)为奇函数,f(3)=0,若x∈(0,10),则可得出f(3)=f(-2)=-f(2)=0,即f(2)=0,∴f(8)=f(3)=0,∴f(7)=f(2)=0.在f(x+5)=f(x)中,令x=-2.5,可得f(2.5)=f(-2.5)=-f(2.5),∴f(2.5)=f(7.5)=0.再根据f(5)=f(0)=0,故在(0,10)上,y=f(x)的零点的个数是2,2.5,3,5,7,7.5,8,共计7个.故选D点睛:本题是函数性质的综合应用,奇偶性周期性的结合,先从周期性入手,利用题目条件中的特殊点得出其它的零点,再结合奇偶性即可得出其它的零点.7、B【解析】根据图象关于坐标原点对称的函数是奇函数,结合奇函数的性质进行判断即可.【详解】因为图象关于坐标原点对称的函数是奇函数,所以有:A:函数y=xB:设f(x)=x3,因为C:设g(x)=x,因为g(-x)=D:因为当x=0时,y=1,所以该函数的图象不过原点,因此不是奇函数,不符合题意,故选:B8、C【解析】根据分组求和可得结果.【详解】,故选:C9、A【解析】由题意,该多面体的直观图是一个正方体挖去左下角三棱锥和右上角三棱锥,如下图,则多面体的表面积.故选A.考点:多面体的三视图与表面积.10、C【解析】先推导出函数的周期为,可得出,然后利用函数的奇偶性结合函数的解析式可计算出结果.【详解】函数是上的奇函数,且,,,所以,函数的周期为,则.故选:C.【点睛】本题考查利用函数的奇偶性和周期求函数值,解题的关键就是推导出函数的周期,考查计算能力,属于中等题.11、A【解析】∵∴∴∴故选A12、A【解析】利用中间量隔开三个值即可.【详解】∵,∴,又,∴,故选:A【点睛】本题考查实数大小的比较,考查指对函数的性质,属于常考题型.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、18【解析】由指数幂的运算与对数运算法则,即可求出结果.【详解】因为.故答案为18【点睛】本题主要考查指数幂运算以及对数的运算,熟记运算法则即可,属于基础题型.14、【解析】根据扇形面积与周长公式代入列式,联立可求解半径.【详解】根据扇形面积公式得,周长公式得,联立可得.故答案为:15、【解析】根据偶次方根式下被开方数非负,有因此函数定义域,注意结果要写出解集性质.考点:函数定义域16、【解析】由扇形的圆心角与面积求得半径再利用弧长公式即可求弧长.【详解】设扇形的半径为r,由扇形的面积公式得:,解得,该扇形的弧长为.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)根据为等边三角形得出,(2)代入弧长公式和面积公式计算.【详解】(1)由于圆的半径为,弦的长为,所以为等边三角形,所以.(2)因为,所以.,又,所以.【点睛】本题主要考查了扇形的相关知识点,弦长、弧长、面积等,属于基础题,解题的关键是在于公式的熟练运用.18、答案见解析【解析】首先化简集合B,然后根据集合、分类讨论a的取值,再根据交集和并集的定义求得答案【详解】解:因所以又因为,当时,所以,当时,所以,当时,所以,当且且时,所以,19、(1)(2)(3)8【解析】记两只白球分别为,;两只红球分别为,;两只黄球分别为,用列举法得出从中随机取2只的所有结果;(1)列举只球都是红球的种数,利用古典概型概率公式,可得结论;(2)列举只球同色的种数,利用古典概型概率公式,可得结论;(3)求出恰有一只是白球的概率,只球都是白球的概率,可得结论【详解】解:记两只白球分别,;两只红球分别为,;两只黄球分别为,从中随机取2只的所有结果为,,,,,,,,,,,,,,共15种(1)只球都是红球为共1种,概率(2)只球同色的有:,,,共3种,概率(3)恰有一只是白球的有:,,,,,,,,共8种,概率;只球都是白球的有:,概率所以:“恰有一只是白球”是“只球都是白球”的概率的8倍【点睛】本题考查概率的计算,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题20、(1);(2)【解析】(1)利用三角函数的定义求出,再根据三角函数的定义求出、即可得解;(2)根据同角三角函数的基本关系求出、,再根据两角差的余弦公式求出,即可得解;【详解】解:(1)因为角的终边过点,且,所以,解得,即,所以,所以,,所以;(2)因为,,所以,又,,所以,所以所以,因为所以21、(1)2;(2)见解析【解析】:(1)利用奇函数定义f(-x)=-f(x)中特殊值求a的值;(2)按按取点,作差,变形,判断的过程来即可试题解析:(1)∵是定义域为的奇函数,∴,即,∴,即解得:.(2)由(1)知,,任取,且,则由,可知:∴,,,∴,即.∴函数在上是增函数.点晴:本题属于对函数单调性应用的考察,若函数在区间上单调递增,则时,有,事实上,若,则,这与矛盾,类似地,若在区间上单调递减,则当时有;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论