版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省赣州市会昌中学、宁师中学2023-2024学年高一上数学期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知集合A={1,2,3},集合B={x|x2=x},则A∪B=()A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}2.已知函数,若,,,则()A. B.C. D.3.已知函数若方程恰有三个不同的实数解a,b,c(),则的取值范围是().A. B.C. D.4.已知,则下列结论中正确的是()A.的最大值为 B.在区间上单调递增C.的图象关于点对称 D.的最小正周期为5.已知直线:和直线:互相垂直,则实数的值为()A.-1 B.1C.0 D.26.某服装厂2020年生产了15万件服装,若该服装厂的产量每年以20%的增长率递增,则该服装厂的产量首次超过40万件的年份是(参考数据:取,)()A.2023年 B.2024年C.2025年 D.2026年7.A. B.C. D.8.已知三个变量随变量变化数据如下表:则反映随变化情况拟合较好的一组函数模型是A. B.C. D.9.函数f(x)=的定义域为()A.(2,+∞) B.(0,2)C.(-∞,2) D.(0,)10.如图程序框图的算法源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的值分别为30,12,0,经过运算输出,则的值为()A.6 B.C.9 D.11.定义在上的奇函数满足,且当时,,则()A. B.2C. D.12.已知函数,则的图像大致是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.在区间上随机地取一个实数,若实数满足的概率为,则________.14.函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分图象如图所示,则的值是________15.已知角的终边经过点,且,则t的值为______16.已知直线平行,则实数的值为____________三、解答题(本大题共6小题,共70分)17.已知函数的部分图象如下图所示(1)求函数的解析式;(2)讨论函数在上的单调性18.求值:(1);(2).19.已知,求值;已知,求的值20.已知函数.(1)判断函数f(x)的单调性并给出证明;(2)若存在实数a使函数f(x)是奇函数,求a;(3)对于(2)中的a,若,当x∈[2,3]时恒成立,求m的最大值21.已知关于x,y的方程C:(1)当m为何值时,方程C表示圆;(2)在(1)的条件下,若圆C与直线l:相交于M、N两点,且|MN|=,求m的值.22.若函数对任意,恒有(1)指出的奇偶性,并给予证明;(2)如果时,,判断的单调性;(3)在(2)的条件下,若对任意实数x,恒有.成立,求k的取值范围
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】求出集合B={0,1},然后根据并集的定义求出A∪B【详解】解:∵集合A={1,2,3},集合B={x|x2=x}={0,1},∴A∪B={0,1,2,3}故选C【点睛】本题考查并集的求法,是基础题,解题时要认真审题2、A【解析】可判断在单调递增,根据单调性即可判断.【详解】当时,单调递增,,,,.故选:A.3、A【解析】画出的图象,数形结合可得求出.【详解】画出的图象所以方程恰有三个不同的实数解a,b,c(),可知m的取值范围为,由题意可知,,所以,所以故选:A.4、B【解析】利用辅助角公式可得,根据正弦型函数最值、单调性、对称性和最小正周期的求法依次判断各个选项即可.【详解】;对于A,,A错误;对于B,当时,,由正弦函数在上单调递增可知:在上单调递增,B正确;对于C,当时,,则关于成轴对称,C错误;对于D,最小正周期,D错误.故选:B.5、B【解析】利用两直线垂直的充要条件即得.【详解】∵直线:和直线:互相垂直,∴,即.故选:B.6、D【解析】设该服装厂的产量首次超过40万件的年份为n,进而得,再结合对数运算解不等式即可得答案.【详解】解:设该服装厂的产量首次超过40万件的年份为n,则,得,因为,所以故选:D7、A【解析】,选A.8、B【解析】根据幂函数、指数函数、对数函数增长速度的不同可得结果.【详解】从题表格可以看出,三个变量都是越来越大,但是增长速度不同,其中变量的增长速度最快,呈指数函数变化,变量的增长速度最慢,对数型函数变化,故选B【点睛】本题主要考查幂函数、指数函数、对数函数模型的应用,意在考查综合利用所学知识解决问题的能力,属于简单题.9、B【解析】列不等式求解【详解】,解得故选:B10、D【解析】利用程序框图得出,再利用对数的运算性质即可求解.【详解】当时,,,当时,,,当时,,,当时,,所以.故选:D【点睛】本题考查了循环结构嵌套条件结构以及对数的运算,解题的关键是根据程序框图求出输出的结果,属于基础题.11、D【解析】根据题意,由,分析可得,即可得函数的周期为4,则有,由函数的解析式以及奇偶性可得的值,即可得答案【详解】解:根据题意,函数满足,即,则函数的周期为4,所以又由函数为奇函数,则,又由当,时,,则;则有;故选:【点睛】本题考查函数奇偶性、周期性的应用,注意分析得到函数的周期,属于中档题12、C【解析】判断函数的奇偶性,再利用时,函数值的符号即可求解.【详解】由,则,所以函数为奇函数,排除B、D.当,则,所以,,所以,排除A.故选:C二、填空题(本大题共4小题,共20分)13、1【解析】利用几何概型中的长度比即可求解.【详解】实数满足,解得,,解得,故答案为:1【点睛】本题考查了几何概率的应用,属于基础题.14、【解析】,把代入,得,,,故答案为考点:1、已知三角函数的图象求解析式;2、三角函数的周期性【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.求解析时求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点)时;“第二点”(即图象的“峰点”)时;“第三点”(即图象下降时与轴的交点)时;“第四点”(即图象的“谷点”)时;“第五点”时15、##0.5625【解析】根据诱导公式得sinα=-,再由任意角三角函数定义列方程求解即可.【详解】因为,所以sinα=-.又角α的终边过点P(3,-4t),故sinα==-,故,且解得t=(或舍)故答案为:.16、【解析】对x,y的系数分类讨论,利用两条直线平行的充要条件即可判断出【详解】当m=﹣3时,两条直线分别化为:2y=7,x+y=4,此时两条直线不平行;当m=﹣5时,两条直线分别化为:x﹣2y=10,x=4,此时两条直线不平行;当m≠﹣3,﹣5时,两条直线分别化为:y=x+,y=+,∵两条直线平行,∴,≠,解得m=﹣7综上可得:m=﹣7故答案为﹣7【点睛】本题考查了分类讨论、两条直线平行的充要条件,属于基础题三、解答题(本大题共6小题,共70分)17、(1)(2)在,上单调递减,在,和,上单调递增【解析】(1)由图知,,最小正周期,由,求得的值,再将点,代入函数的解析式中,求出的值,即可;(2)由,,知,,再结合正弦函数的单调性,即可得解【小问1详解】解:由图知,,最小正周期,因为,所以,将点,代入函数的解析式中,得,所以,,即,,因为,所以,故函数的解析式为;【小问2详解】解:因为,,所以,,令,则,,因为函数在,上单调递减,在,和,上单调递增,令,得,令,得,令,得,所以在,上单调递减,在,和,上单调递增18、(1);(2)5.【解析】(1)利用指数幂的运算法则计算即得解;(2)利用对数的运算法则化简计算即得解.【详解】(1)原式=;(2)原式=.【点睛】本题主要考查指数对数的运算,意在考查学生对这些知识的理解掌握水平.19、(1)(2)【解析】(1)由三角函数中平方关系求得,再由诱导公式可商数关系化简求值;(2)考虑到已知角与待求角互余,可直接利用诱导公式求值【详解】解:已知,所以:,所以:,,,由于,所以:【点睛】本题考查同角间的三角函数关系与诱导公式,解题时需考虑已知角与未知角之间的关系,以寻求运用恰当的公式进行化简变形与求值20、(1)单调递增(2)见解析【解析】(1)根据单调性定义:先设再作差,变形化为因子形式,根据指数函数单调性确定因子符号,最后根据差的符号确定单调性(2)根据定义域为R且奇函数定义得f(0)=0,解得a=1,再根据奇函数定义进行验证(3)先根据参变分离将不等式恒成立化为对应函数最值问题:的最小值,再利用对勾函数性质得最小值,即得的范围以及的最大值试题解析:解:(1)不论a为何实数,f(x)在定义域上单调递增.证明:设x1,x2∈R,且x1<x2,则由可知,所以,所以所以由定义可知,不论为何值,在定义域上单调递增(2)由f(0)=a-1=0得a=1,经验证,当a=1时,f(x)是奇函数.(3)由条件可得:m2x=(2x+1)+-3恒成立.m(2x+1)+-3的最小值,x∈[2,3].设t=2x+1,则t∈[5,9],函数g(t)=t+-3在[5,9]上单调递增,所以g(t)的最小值是g(5)=,所以m,即m的最大值是.21、(1)m<5;(2)m=4【解析】(1)求出圆的标准方程形式,即可求出m的值;(2)利用半径,弦长,弦心距的关系列方程求解即可【详解】解:(1)方程C可化为,显然只要5−m>0,即m<5时,方程C表示圆;(2)因为圆C的方程为,其中m<5,所以圆心C(1,2),半径,则圆心C(1,2)到直线l:x+2y−4=0的距离为,因为|MN|=,所以|MN|=,所以,解得m=4【点睛】本题主要考查直线和圆的位置关系的应用,根据圆的标准方程求出圆心和半径是解决本题的关键22、(1)奇函数,证明见解析;(2)在R上单调递减,证明见解析;(3)【解析】(1)利用赋值法求出,根据函数奇偶性定义即可证明;(2)根据函数单调性定义即判断函数的单调性;(3)结合函数的奇偶性和单调性,将不等式进行等价转化,即可得到结论【详解】(1)为奇函数;证明:令,得,解得:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 024学年湘豫名校高三语文(上)11月一轮检测试卷及答案解析
- 合作门店合同模板
- 牛肉丸销售合同范例
- 游戏转让合同范例
- 二零二四年度设备采购合同技术参数与服务内容
- 等价更换合同范例
- 甘肃食堂劳务服务合同模板
- 2024标准委托借款合同样本
- 简装合同模板
- 托管签合同范例
- 电梯基坑护栏施工方案
- 防洪抢险技术77张课件
- 国企廉洁从业培训-《严守纪律底线、坚持廉洁从业》
- DB37-T 5020-2023 装配式建筑预制混凝土构件制作与验收标准
- 尿管滑脱不良事件分析
- 2023学年完整公开课版mydreamjob作文教学
- 急性脑梗塞护理查房1课件
- 课题结题材料初中生心理健康教育设计研究
- 沥青路面用木质素纤维检测原始记录
- 0~3岁儿童亲子活动设计与指导(高职学前教育)PPT完整全套教学课件
- 露天煤矿边坡监测报告
评论
0/150
提交评论