吉林省长春市养正高级中学2024届数学高一上期末联考模拟试题含解析_第1页
吉林省长春市养正高级中学2024届数学高一上期末联考模拟试题含解析_第2页
吉林省长春市养正高级中学2024届数学高一上期末联考模拟试题含解析_第3页
吉林省长春市养正高级中学2024届数学高一上期末联考模拟试题含解析_第4页
吉林省长春市养正高级中学2024届数学高一上期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市养正高级中学2024届数学高一上期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数,则下列坐标表示的点一定在函数图像上的是A. B.C. D.2.有一组实验数据如下表所示:1.93.04.0516.11.54.07.512.018.0现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是()A. B.C. D.3.过点A(3,4)且与直线l:x﹣2y﹣1=0垂直的直线的方程是A.2x+y﹣10=0 B.x+2y﹣11=0C.x﹣2y+5=0 D.x﹣2y﹣5=04.若函数的图像关于点中心对称,则的最小值为()A. B.C. D.5.下列函数中为奇函数,且在定义域上为增函数的有()A. B.C. D.6.过点,且圆心在直线上的圆的方程是()A. B.C. D.7.函数是A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数8.如果直线l,m与平面满足和,那么必有()A.且 B.且C.且 D.且9.已知函数,则下列结论错误的是()A.的一个周期为 B.的图象关于直线对称C.的一个零点为 D.在区间上单调递减10.函数在区间上的简图是()A. B.C. D.11.一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该多面体的体积为A.24cm3 B.48cm3C.32cm3 D.96cm312.设集合A={3,4,5},B={3,6},P={x|xA},Q={x|xB},则PQ=A.{3}B.{3,4,5,6}C.{{3}}D.{{3},}二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数,若在上是增函数,且直线与的图象在上恰有一个交点,则的取值范围是________.14.若不等式在上恒成立,则实数a的取值范围为____.15.已知,且,写出一个满足条件的的值___________16.在区间上随机取一个实数,则事件发生的概率为_________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知为奇函数,为偶函数,且.(1)求及的解析式及定义域;(2)如果函数,若函数有两个零点,求实数的取值范围.18.已知函数f(x)=x-(1)讨论并证明函数f(x)在区间(0,+∞)的单调性;(2)若对任意的x∈[1,+∞),f(mx)+mf(x)<0恒成立,求实数m的取值范围19.已知函数是定义在上的奇函数.(1)若,且,求函数的解析式;(2)若函数在上是增函数,且,求实数的取值范围.20.已知函数(1)若的定义域为,求实数的值;(2)若的定义域为,求实数的取值范围21.已知函数(且),在上的最大值为.(1)求的值;(2)当函数在定义域内是增函数时,令,判断函数的奇偶性,并证明,并求出的值域.22.已知函数(1)若,成立,求实数的取值范围;(2)证明:有且只有一个零点,且

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】因为函数,,所以,所以函数为偶函数,则、均在在函数图像上.故选D考点:函数的奇偶性2、B【解析】先画出实验数据的散点图,结合各选项中的函数特征可得的选项.【详解】实验数据的散点图如图所示:4个选项中的函数,只有B符合,故选:B.3、A【解析】依题意,设所求直线的一般式方程为,把点坐标代入求解,从而求出一般式方程.【详解】设经过点且垂直于直线的直线的一般式方程为,把点坐标代入可得:,解得,所求直线方程为:.故选:A【点睛】本题考查了直线的方程、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题.4、C【解析】根据函数的图像关于点中心对称,由求出的表达式即可.【详解】因为函数的图像关于点中心对称,所以,所以,解得,所以故选:C【点睛】本题主要考查余弦函数的对称性,还考查了运算求解的能力,属于基础题.5、C【解析】根据函数的奇偶性,可排除A,B;说明的奇偶性以及单调性,可判断C;根据的单调性,判断D.【详解】函数为非奇非偶函数,故A错;函数为偶函数,故B错;函数,满足,故是奇函数,在定义域R上,是单调递增函数,故C正确;函数在上是增函数,在上是增函数,在定义域上不单调,故D错,故选:C6、B【解析】由题设得的中垂线方程为,其与交点即为所求圆心,并应用两点距离公式求半径,写出圆的方程即可.【详解】由题设,的中点坐标为,且,∴的中垂线方程为,联立,∴,可得,即圆心为,而,∴圆的方程是.故选:B7、C【解析】根据题意,由于函数是,因此排除线线A,B,然后对于选项C,D,由于正弦函数周期为,那么利用图象的对称性可知,函数的周期性为,故选C.考点:函数的奇偶性和周期性点评:解决的关键是根据已知函数解析式俩分析确定奇偶性,那么同时结合图像的变换来得到周期,属于基础题8、A【解析】根据题设线面关系,结合平面的基本性质判断线线、线面、面面的位置关系.【详解】由,则;由,则;由上条件,m与可能平行、相交,与有可能平行、相交.综上,A正确;B,C错误,m与有可能相交;D错误,与有可能相交故选:A9、B【解析】根据周期求出f(x)最小正周期即可判断A;判断是否等于1或-1即可判断是否是其对称轴,由此判断B;判断否为0即可判断C;,根据复合函数单调性即可判断f(x)单调性,由此判断D.【详解】函数,最小正周期为故A正确;,故直线不是f(x)的对称轴,故B错误;,则,∴C正确;,∴f(x)在上单调递减,故D正确.故选:B.10、B【解析】分别取,代入函数中得到值,对比图象即可利用排除法得到答案.【详解】当时,,排除A、D;当时,,排除C.故选:B.11、B【解析】由三视图可知该几何体是一个横放的直三棱柱,利用所给的数据和直三棱柱的体积公式即可求得体积.【详解】由三视图可知该几何体是一个横放的直三棱柱,底面为等腰三角形,底边长为,底面三角形高为,所以其体积为:.故选:B【点睛】本题考查三视图及几何体体积计算,认识几何体的几何特征是解题的关键,属于基础题.12、D【解析】集合P={x|x⊆A}表示集合A的子集构成的集合,故P={∅,{3},{4},{5},{3,4},{3,5},{4,5},{3,4,5}},同样Q={∅,{3},{6},{3,6}}.∴P∩Q={{3},Φ};故选D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由正弦函数的单调性以及图象的分析得出的取值范围.【详解】因为在上是增函数,所以,解得因为直线与的图象在上恰有一个交点,所以,解得,综上.故答案为:14、【解析】把不等式变形为,分和情况讨论,数形结合求出答案.【详解】解:变形为:,即在上恒成立令,若,此时在上单调递减,,而当时,,显然不合题意;当时,画出两个函数的图象,要想满足在上恒成立,只需,即,解得:综上:实数a的取值范围是.故答案为:15、π(答案不唯一)【解析】利用,可得,又,确定可得结果.【详解】因为,所以,,则,或,,又,故满足要求故答案为:π(答案不唯一)16、【解析】由得:,∵在区间上随机取实数,每个数被取到的可能性相等,∴事件发生的概率为,故答案为考点:几何概型三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),(2)【解析】(1)根据是奇函数,是偶函数,结合,以取代入上式得到,联立求解;(2)易得,,设,转化为,,根据时,与有两个交点,转化为函数,在有一个零点求解.【小问1详解】解:因为是奇函数,是偶函数,所以,,∵,①∴令取代入上式得,即,②联立①②可得,,【小问2详解】,,,可得,∴,.设,∴,,∵当时,与有两个交点,要使函数有两个零点,即使得函数,在有一个零点,(时,只有一个零点)即方程在内只有一个实根,∵,令,则使即可,∴或.∴的取值范围.18、(1)函数f(x)在(0,+∞)上单调递增,见解析(2)m<-1【解析】1利用单调性的定义,根据步骤,取值,作差,变形,定号下结论,即可得到结论;2原不等式等价于2mx-1mx-mx<0对任意的x∈[1,+∞)恒成立,整理得2mx2解析:(1)函数f(x)在(0,+∞)上单调递增证明:任取x2>x因为x2>x1>0,所以x所以函数f(x)在(0,+∞)上单调递增(2)原不等式等价于2mx-1mx-整理得2mx2-m-若m>0,则左边对应的函数开口向上,当x∈[1,+∞)时,必有大于0的函数值;所以m<0且2m-m-1所以m<-119、(1)(2)【解析】【试题分析】(1)利用可求得的值,利用,可求得的值.(2)利用奇函数的性质,将圆不等式转化为然后利用函数的单调性列不等式来求解.【试题解析】(Ⅰ)是定义在上的奇函数,经检验成立(Ⅱ)是定义在上的奇函数且即函数在上是增函数的取值范围是20、(1);(2)【解析】(1)根据题意,由二次型不等式解集,即可求得参数的取值;(2)根据题意,不等式在上恒成立,即可求得参数范围.【详解】(1)的定义域为,即的解集为,故,解得;(2)的定义域为,即恒成立,当时,,经检验满足条件;当时,解得,综上,【点睛】本题考查由函数的定义域求参数范围,涉及由一元二次不等式的解集求参数值,以及一元二次不等式在上恒成立问题的处理,属综合基础题.21、(1)或(2)为偶函数,证明见解析,.【解析】(1)分别在和时,根据函数单调性,利用最大值可求得;(2)由(1)可得,根据奇偶性定义判断可知其为偶函数;利用对数型复合函数值域的求解方法可求得值域.【小问1详解】当时,为增函数,,解得:;当时,为减函数,,解得:;综上所述:或.【小问2详解】当函数在定义域内是增函数时,,由(1)知:;,由得:,即定义域为;又,是定义在上的偶函数;,当时,,,即的值域为.22、(1)(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论