江苏省连云港市海庆中学2024届高一数学第一学期期末质量跟踪监视试题含解析_第1页
江苏省连云港市海庆中学2024届高一数学第一学期期末质量跟踪监视试题含解析_第2页
江苏省连云港市海庆中学2024届高一数学第一学期期末质量跟踪监视试题含解析_第3页
江苏省连云港市海庆中学2024届高一数学第一学期期末质量跟踪监视试题含解析_第4页
江苏省连云港市海庆中学2024届高一数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省连云港市海庆中学2024届高一数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.设,,,则a,b,c的大小关系为()A. B.C. D.2.函数的减区间为()A. B.C. D.3.若是三角形的一个内角,且,则的值是()A. B.C.或 D.不存在4.下列各组函数中,表示为同一个函数的是A.与 B.与C.与 D.与且5.函数的图象大致为()A. B.C. D.6.函数y=8x2-(m-1)x+m-7在区间(-∞,-]上单调递减,则m的取值范围为()A. B.C. D.7.已知直线:与:平行,则的值是().A.或 B.或C.或 D.或8.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数(且)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知,动点满足,则动点轨迹与圆位置关系是()A.外离 B.外切C.相交 D.内切9.从数字中随机取两个不同的数,分别记为和,则为整数的概率是()A. B.C. D.10.如图,AB是⊙O直径,C是圆周上不同于A、B的任意一点,PA与平面ABC垂直,则四面体P_ABC的四个面中,直角三角形的个数有()A.4个 B.3个C.1个 D.2个11.C,S分别表示一个扇形的周长和面积,下列能作为有序数对取值的是()A. B.C. D.12.下列函数值为的是()A.sin390° B.cos750°C.tan30° D.cos30°二、填空题(本大题共4小题,共20分)13.函数的定义域是______________14.若,,,则的最小值为____________.15.将函数图象上的所有点向右平行移动个单位长度,则所得图象的函数解析式为___________.16.已知圆心为(1,1),经过点(4,5),则圆标准方程为_____________________.三、解答题(本大题共6小题,共70分)17.如图,已知多面体PABCDE的底面ABCD是边长为2的菱形,PA⊥底面ABCD,ED//PA,且PA=2ED=2(1)证明:平面PAC⊥平面PCE;(2)若直线PC与平面ABCD所成的角为45°,求直线CD与平面PCE所成角的正弦值18.已知全集,,集合(1)求;(2)求19.如图,在中,斜边,,在以为直径的半圆上有一点(不含端点),,设的面积,的面积.(1)若,求;(2)令,求的最大值及此时的.20.已知向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π](1)若与共线,求x的值;(2)若⊥,求x的值;(3)记f(x)=•,当f(x)取得最小值时,求x的值21.已知全集,若集合,.(1)若,求;(2)若,求实数的取值范围.22.已知函数,不等式解集为,设(1)若存在,使不等式成立,求实数的取值范围;(2)若方程有三个不同的实数解,求实数的取值范围

参考答案一、选择题(本大题共12小题,共60分)1、A【解析】根据指数函数和对数函数的单调性得出的范围,然后即可得出的大小关系.【详解】由题意知,,即,,即,,又,即,∴故选:A2、D【解析】先气的函数的定义域为,结合二次函数性质和复合函数的单调性的判定方法,即可求解.【详解】由题意,函数有意义,则满足,即,解得,即函数的定义域为,令,可得其开口向下,对称轴的方程为,所以函数在区间单调递增,在区间上单调递减,根据复合函数的单调性,可得函数在上单调递减,即的减区间为.故选:D.3、B【解析】由诱导公式化为,平方求出,结合已知进一步判断角范围,判断符号,求出,然后开方,进而求出的值,与联立,求出,即可求解.【详解】,平方得,,是三角形的一个内角,,,,.故选:B【点睛】本题考查诱导公式化简,考查同角间的三角函数关系求值,要注意,三者关系,知一求三,属于中档题.4、D【解析】A,B两选项定义域不同,C选项对应法则不同,D选项定义域和对应法则均相同,即可得选项.【详解】A.,,两个函数的定义域不同,不是同一函数,B.,,两个函数的定义域不同,不是同一函数,C.,两个的对应法则不相同,不是同一函数D.,,两个函数的定义域和对应法则相同是相同函数,故选D【点睛】此题是个基础题.本题考查函数的三要素:定义域、值域、对应关系,相同的函数必然具有相同的定义域、值域、对应关系.要使数与的同一函数,必须满足定义域和对应法则完全相同即可,注意分析各个选项中的个函数的定义域和对应法则是否相同,通常的先后顺序为先比较定义域是否相同,其次看对应关系或值域..5、A【解析】由函数的奇偶性质可知函数为偶函数,再结合时函数的符号即可得答案.【详解】解:由题知函数的定义域为,关于原点对称,,所以函数为偶函数,其图像关于轴对称,故排除B,D,当时,,故排除C,得A为正确选项.故选:A6、A【解析】求出函数的对称轴,得到关于m的不等式,解出即可【详解】函数的对称轴是,若函数在区间上单调递减,则,解得:m≥0,故选A【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键7、C【解析】当k-3=0时,求出两直线的方程,检验是否平行;当k-3≠0时,由一次项系数之比相等且不等于常数项之比,求出k的值解:由两直线平行得,当k-3=0时,两直线方程分别为y=-1和y=3/2,显然两直线平行.当k-3≠0时,由,可得k=5.综上,k的值是3或5,故选C8、C【解析】设动点P的坐标,利用已知条件列出方程,化简可得点P的轨迹方程为圆,再判断圆心距和半径的关系即可得解.,详解】设,由,得,整理得,表示圆心为,半径为的圆,圆的圆心为为圆心,为半径的圆两圆的圆心距为,满足,所以两个圆相交.故选:C.9、B【解析】先计算出从数字中随机取两个不同的数,共有种情况,再求出满足为整数的情况,即可求出为整数的概率.【详解】解:从数字中随机取两个不同的数,则有种选法,有种选法,共有种情况;则满足为整数的情况如下:当时,或有种情况;当时,有种情况;当或时,则不可能为整数,故共有种情况,故为整数的概率是:.故选:B.10、A【解析】AB是圆O的直径,可得出三角形是直角三角形,由圆O所在的平面,根据线垂直于面性质得出三角形和三角形是直角三角形,同理可得三角形是直角三角形.【详解】∵AB是圆O的直径,∴∠ACB=,即,三角形是直角三角形.又∵圆O所在的平面,∴三角形和三角形是直角三角形,且BC在此平面中,∴平面,∴三角形是直角三角形.综上,三角形,三角形,三角形,三角形.直角三角形数量为4.故选:A.【点睛】考查线面垂直的判定定理和应用,知识点较为基础.需多理解.难度一般.11、B【解析】设扇形半径为,弧长为,则,,根据选项代入数据一一检验即可【详解】设扇形半径为,弧长为,则,当,有,则无解,故A错;当,有得,故B正确;当,有,则无解,故C错;当,有,则无解,故D错;故选:B12、A【解析】由诱导公式计算出函数值后判断详解】,,,故选:A二、填空题(本大题共4小题,共20分)13、【解析】由题意可得,从而可得答案.【详解】函数的定义域满足即,所以函数的定义域为故答案为:14、9【解析】“1”的代换法去求的最小值即可.【详解】(当且仅当时等号成立)则的最小值为9故答案为:915、【解析】由题意利用函数的图象变换规律,即可得到结果【详解】将函数的图象向右平移个单位,所得图象对应的函数解析式,即.故答案为:.16、【解析】设出圆的标准方程,代入点的坐标,求出半径,求出圆的标准方程【详解】设圆的标准方程为(x-1)2+(y-1)2=R2,由圆经过点(4,5)得R2=25,从而所求方程为(x-1)2+(y-1)2=25,故答案为(x-1)2+(y-1)2=25【点睛】本题主要考查圆的标准方程,利用了待定系数法,关键是确定圆的半径三、解答题(本大题共6小题,共70分)17、(1)见解析(2)2【解析】1连接BD,交AC于点O,设PC中点为F,连接OF,EF,先证出BD∥EF,再证出EF⊥平面PAC,,结合面面垂直的判定定理即可证平面PAC⊥平面PCE;2先证明∠PCA=45°,设CD的中点为M,连接AM,所以点P到平面CDE的距离与点A到平面CDE的距离相等,即h2解析:(1)证明:连接BD,交AC于点O,设PC中点为F,连接OF,EF∵O,F分别为AC,PC的中点,∴OF//PA,且OF=1∵DE//PA,且DE=1∴OF//DE,且OF=DE,∴四边形OFED为平行四边形,∴OD//EF,即BD//EF,∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD,∵ABCD是菱形,∴BD⊥AC∵PA∩AC=A,∴BD⊥平面PAC,∵BD//EF,∴EF⊥平面PAC,∵FE⊂平面PCE,∴平面PAC⊥平面PCE(2)因为直线PC与平面ABCD所成角为45°,所以∠PCA=45°,所以AC=PA=2,所以AC=AB,故ΔABC为等边三角形,设CD的中点为M,连接AM,则AM⊥CD,设点D到平面PCE的距离为h1,点P到平面CDE的距离为h则由VD-PCE=V因为ED⊥面ABCD,AM⊂面ABCD,所以ED⊥AM,又AM⊥CD,CD∩DE=D,∴AM⊥面CDE;因为PA//DE,PA⊄平面CDE,DE⊂面CDE,所以PA//面CDE,所以点P到平面CDE的距离与点A到平面CDE的距离相等,即h2因为PE=EC=5,PC=22,所以又SΔCDE=1,代入(*)得6⋅设CD与平面PCE所成角的正弦值为2418、(1);(2).【解析】(1)根据集合的并运算,结合已知条件,即可求得结果;(2)先求,再求交集即可.【小问1详解】全集,,集合,故.【小问2详解】集合,故或,故.19、(1);(2),有最大值.【解析】由已知可得,.(1)根据解可得答案;(2)由化简为,根据的范围可得答案.【详解】因为中,,,所以,,.又因为为以为直径的半圆上一点,所以.在中,,,.作于点,则,,(1)若,则,因为,所以,所以,整理得,所以,.(2)因为,所以,当时,即,有最大值.【点睛】本题考查了三角函数的性质和解三角形,关键点是利用已知得到,,正确的利用两角和与差的正弦公式得到函数表达式的形式,考查了运算能力.20、(1);(2);(3).【解析】(1)利用两向量平行有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(2)利用两向量垂直有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(3)根据化出一个关于的方程,再利用恒等变化公式将函数转化成,从而找到最小值所取得的x的值.【详解】解:(1)∵向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π]与共线,∴,∴tanx=-,∵x∈[0,π],∴x=(2)∵⊥,∴cosx-sinx=0,∴tanx=1,∵x∈[0,π],∴x=(3)f(x)=•=cosx-,∵x∈[0,π],∴x-∈[-,],∴x-=时,f(x)取得最小值-2,∴当f(x)取得最小值时,x=【点睛】向量间的位置关系:两向量垂直,则,两向量平行,则.21、(1)(2)【解析】(1)利用集合的交集及补集的定义直接求解即可;(2)由可得,利用集合的包含关系求解即可.【详解】(1)当时,,所以,因为,所以;(2)由得,,所以【点睛】本题主要考查了集合的运算及包含关系求参,属于基础题.22、(1);(2)【解析】(1)由不等式的解集为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论