湖南省长沙市广益实验中学2024届数学高一上期末检测试题含解析_第1页
湖南省长沙市广益实验中学2024届数学高一上期末检测试题含解析_第2页
湖南省长沙市广益实验中学2024届数学高一上期末检测试题含解析_第3页
湖南省长沙市广益实验中学2024届数学高一上期末检测试题含解析_第4页
湖南省长沙市广益实验中学2024届数学高一上期末检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市广益实验中学2024届数学高一上期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知命题:“,方程有解”是真命题,则实数a的取值范围是()A. B.C. D.2.函数的零点所在的大致区间是A. B.C. D.3.已知函数的定义域为,则函数的定义域为()A. B.C. D.4.设是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则;②若,,,则;③若,,则;④若,,则.其中正确命题的序号是A.① B.②和③C.③和④ D.①和④5.定义运算:,将函数的图象向左平移的单位后,所得图象关于轴对称,则的最小值是()A. B.C. D.6.函数=的部分图像如图所示,则的单调递减区间为A. B.C. D.7.在下列图象中,函数的图象可能是A. B.C. D.8.设平面向量,则A. B.C. D.9.已知α为第二象限角,,则cos2α=()A. B.C. D.10.如图,点,,分别是正方体的棱,的中点,则异面直线和所成的角是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;对于集合,,若这两个集合构成“鲸吞”,则的取值为____________12.计算的结果是_____________13.已知函数是定义在的偶函数,且当时,若函数有8个零点,分别记为,,,,,,,,则的取值范围是______.14.函数的定义域为_________________________15.已知,则的大小关系是___________________.(用“”连结)16.等比数列中,,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量m=(cos,sin),n=(2+sinx,2-cos),函数=m·n,x∈R.(1)求函数的最大值;(2)若且=1,求的值.18.提高过江大桥的车辆通行的车辆通行能力可改善整个城市的交通状况,在一般情况下大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,就会造成堵塞,此时车流速度为0:当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数(1)当时,求函数的表达式:(2)如果车流量(单位时间内通过桥上某或利点的车辆数)(单位:辆/小时)那么当车流密度为多大时,车流量可以达到最大,并求出最大值,(精确到1辆/小时)19.要建造一段5000m的高速公路,工程队需要把600人分成两组,一组完成一段2000m的软土地带公路的建造任务,同时另一组完成剩下的3000m的硬土地带公路的建造任务.据测算,软、硬土地每米公路的工程量分别是50人/天和30人/天,设在软土地带工作的人数x人,在软土、硬土地带筑路的时间分别记为,(1)求,;(2)求全队的筑路工期;(3)如何安排两组人数,才能使全队筑路工期最短?20.函数的部分图像如图所示(1)求的解析式;(2)已知函数求的值域21.(1)已知:,若是第四象限角,求,的值;(2)已知,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由根的判别式列出不等关系,求出实数a的取值范围.【详解】“,方程有解”是真命题,故,解得:,故选:B2、C【解析】分别求出的值,从而求出函数的零点所在的范围【详解】由题意,,,所以,所以函数的零点所在的大致区间是,故选C.【点睛】本题考察了函数的零点问题,根据零点定理求出即可,本题是一道基础题3、B【解析】抽象函数的定义域求解,要注意两点,一是定义域是x的取值范围;二是同一对应法则下,取值范围一致.【详解】的定义域为,,即,,解得:且,的定义域为.故选:.4、A【解析】结合直线与平面垂直的性质和平行判定以及平面与平面的位置关系,逐项分析,即可.【详解】①选项成立,结合直线与平面垂直的性质,即可;②选项,m可能属于,故错误;③选项,m,n可能异面,故错误;④选项,该两平面可能相交,故错误,故选A.【点睛】本题考查了直线与平面垂直的性质,考查了平面与平面的位置关系,难度中等.5、C【解析】由题意可得,再根据平移得到的函数为偶函数,利用对称轴即可解出.【详解】因为,所以,其图象向左平移个单位,得到函数的图象,而图象关于轴对称,所以其为偶函数,于是,即,又,所以的最小值是故选:C.6、D【解析】由五点作图知,,解得,,所以,令,解得<<,,故单调减区间为(,),,故选D.考点:三角函数图像与性质7、C【解析】根据函数的概念,可作直线从左向右在定义域内移动,得到直线与曲线的交点个数,即可判定.【详解】由函数的概念可知,任意一个自变量的值对应的因变量的值是唯一的,可作直线从左向右在定义域内移动,得到直线与曲线的交点个数是0或1,显然A、B、D均不满足函数的概念,只有选项C满足.故选:C.【点睛】本题主要考查了函数概念,以及函数的图象及函数的表示,其中解答中正确理解函数的基本概念是解答的关键,着重考查了数形结合思想的应用.8、A【解析】∵∴故选A;【考点】:此题重点考察向量加减、数乘的坐标运算;【突破】:准确应用向量的坐标运算公式是解题的关键;9、A【解析】,故选A.10、C【解析】通过平移的方法作出直线和所成的角,并求得角的大小.【详解】依题意点,,分别是正方体的棱,的中点,连接,结合正方体的性质可知,所以是异面直线和所成的角,根据正方体的性质可知,是等边三角形,所以,所以直线和所成的角为.故选:C【点睛】本小题主要考查线线角的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、0【解析】根据题中定义,结合子集的定义进行求解即可.【详解】当时,,显然,符合题意;当时,显然集合中元素是两个互为相反数的实数,而集合中的两个元素不互为相反数,所以集合、之间不存在子集关系,不符合题意,故答案为:12、.【解析】根据对数的运算公式,即可求解.【详解】根据对数的运算公式,可得.故答案为:.13、【解析】由偶函数的对称性,将转化为,再根据二次函数的对称性及对数函数的性质可进一步转化为,结合利用二次函数的性质即可求解.【详解】解:因为函数有8个零点,所以直线与函数图像交点有8个,如图所示:设,因为函数是定义在的偶函数,所以函数的图像关于轴对称,所以,且由二次函数对称性有,由有,所以又,所以,所以,故答案为:.14、(-1,2).【解析】分析:由对数式真数大于0,分母中根式内部的代数式大于0联立不等式组求解x的取值集合得答案详解:由,解得﹣1<x<2∴函数f(x)=+ln(x+1)的定义域为(﹣1,2)故答案为(﹣1,2)点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0定义域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞)15、【解析】利用特殊值即可比较大小.【详解】解:,,,故.故答案为:.16、【解析】等比数列中,由可得.等比数列,构成以为首项,为公比的等比数列,所以【点睛】若数列为等比数列,则构成等比数列三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)f(x)的最大值是4(2)-【解析】(1)先由向量的数量积坐标表示得到函数的三角函数解析式,再将其化简得到f(x)=4sin(x∈R),最大值易得;(2)若且=1,,解三角方程求出符合条件的x的三角函数值,再有余弦的和角公式求的值【详解】(1)因为f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)=2(sinx+cosx)=4sin(x∈R),所以f(x)的最大值是4.(2)因为f(x)=1,所以sin=.又因为x∈,即x+∈.所以cos=-cos=cos.=coscos-sinsin=-×-×=-.【点睛】本题考查平面向量的综合题18、(1);(2)当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333/小时..【解析】详解】试题分析:本题考查函数模型在实际中的应用以及分段函数最值的求法.(1)根据题意用分段函数并结合待定系数法求出函数的关系式.(2)首先由题意得到的解析式,再根据分段函数最值的求得求得最值即可试题解析:(1)由题意:当时,;当时,设由已知得解得∴综上可得(2)依题意并由(1)可得①当时,为增函数,∴当时,取得最大值,且最大值为1200②当时,,∴当时,取得最大值,且最大值为.所以的最大值为故当车流密度为100辆/千米时,车流量可以达到最大,且最大值为3333辆/小时.19、(1),,,(2),且(3)安排316人到软土地带工作,284人到硬土地带工作时,可以使全队筑路工期最短【解析】(1)由题意分别计算在软土、硬土地带筑路的时间即可;(2)由得到零点,即可得到分段函数;(3)利用函数的单调性即可得到结果.【小问1详解】在软土地带筑路时间为:,在硬土地带筑路时间为,,【小问2详解】全队的筑路工期为由于,即,得从而,即,且.【小问3详解】函数区间上递减,在区间上递增,所以是函数的最小值点但不是整数,于是计算和,其中较小者即为所求于是安排316人到软土地带工作,284人到硬土地带工作时,可以使全

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论