湖南省永州市祁阳一中2024届数学高一上期末含解析_第1页
湖南省永州市祁阳一中2024届数学高一上期末含解析_第2页
湖南省永州市祁阳一中2024届数学高一上期末含解析_第3页
湖南省永州市祁阳一中2024届数学高一上期末含解析_第4页
湖南省永州市祁阳一中2024届数学高一上期末含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省永州市祁阳一中2024届数学高一上期末注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知点P(1,a)在角α的终边上,tan=-则实数a的值是()A.2 B.C.-2 D.-2.,则A.1 B.2C.26 D.103.已知函数恰有2个零点,则实数a取值范围是()A. B.C. D.4.若正实数满足,(为自然对数的底数),则()A. B.C. D.5.如图,在正方体中,异面直线与所成的角为()A.90° B.60°C.45° D.30°6.已知函数,的值域为,则实数的取值范围是A. B.C. D.7.若,且,则的值是A. B.C. D.8.命题任意圆的内接四边形是矩形,则为()A.每一个圆的内接四边形是矩形B.有的圆的内接四边形不是矩形C.所有圆的内接四边形不是矩形D.存在一个圆内接四边形是矩形9.若xlog34=1,则4x+4–x=A.1 B.2C. D.10.设全集,,,则图中阴影部分表示的集合为A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数,则当______时,函数取到最小值且最小值为_______.12.在平面直角坐标系中,已知点A在单位圆上且位于第三象限,点A的纵坐标为,现将点A沿单位圆逆时针运动到点B,所经过的弧长为,则点B的坐标为___________.13.化简:________.14.已知函数,则下列说法正确的有________.①的图象可由的图象向右平移个单位长度得到②在上单调递增③在内有2个零点④在上的最大值为15.①函数y=sin2x的单调增区间是[],(k∈Z);②函数y=tanx在它的定义域内是增函数;③函数y=|cos2x|的周期是π;④函数y=sin()是偶函数;其中正确的是____________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数的部分图象如图所示.(1)求的解析式;(2)把图象上所有点的横坐标缩小到原来的,再向左平移个单位长度,向下平移1个单位长度,得到的图象,求的单调区间.17.已知向量,,(1)若,求向量与的夹角;(2)若函数.求当时函数的值域18.已知平面上点,且.(1)求;(2)若点,用基底表示.19.已知函数满足,且.(1)求的解析式;(2)求在上的值域.20.某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:00200(1)请将上表数据补充完整;函数解析式为=(直接写出结果即可);(2)求函数的单调递增区间;(3)求函数在区间上的最大值和最小值21.已知函数,1求的值;2若,,求

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】利用两角和的正切公式得到关于tanα的值,进而结合正切函数的定义求得a的值.【详解】∵,∴tanα=-2,∵点P(1,a)在角α的终边上,∴tanα==a,∴a=-2.故选:C.2、B【解析】根据题意,由函数的解析式可得,进而计算可得答案.【详解】根据题意,,则;故选B.【点睛】本题考查分段函数函数值的计算,注意分析函数的解析式.解决分段函数求值问题的策略:(1)在求分段函数的值f(x0)时,一定要首先判断x0属于定义域的哪个子集,然后再代入相应的关系式;(2)分段函数是指自变量在不同的取值范围内,其对应法则也不同的函数,分段函数是一个函数,而不是多个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集,故解分段函数时要分段解决;(3)求f(f(f(a)))的值时,一般要遵循由里向外逐层计算的原则.3、D【解析】由在区间上单调递减,分类讨论,,三种情况,根据零点个数求出实数a的取值范围.【详解】函数在区间上单调递减,且方程的两根为.若时,由解得或,满足题意.若时,,,当时,,即函数在区间上只有一个零点,因为函数恰有2个零点,所以且.当时,,,此时函数有两个零点,满足题意.综上,故选:D4、C【解析】由指数式与对数式互化为相同形式后求解【详解】由题意得:,,,①,又,,,和是方程的根,由于方程的根唯一,,由①知,,故选:C5、B【解析】连接,可证明,然后可得即为异面直线与所成的角,然后可求出答案.【详解】连接,因为是正方体,所以和平行且相等所以四边形是平行四边形,所以,所以为异面直线与所成的角.因为是等边三角形,所以故选:B6、B【解析】由题得由g(t)的图像,可知当时,f(x)的值域为,所以故选B.7、B【解析】由已知利用同角三角函数基本关系式可求,的值,即可得解【详解】由题意,知,且,所以,则,故选B【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,其中解答中熟练应用同角三角函数的基本关系式,准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.8、B【解析】全称命题的否定特称命题,任意改为存在,把结论否定.【详解】全称量词命题的否定是特称命题,需要将全称量词换为存在量词,答案A,C不符合题意,同时对结论进行否定,所以:有的圆的内接四边形不是矩形,故选:B.9、D【解析】条件可化为x=log43,运用对数恒等式,即可【详解】∵xlog34=1,∴x=log43,∴4x=3,∴4x+4–x=3+.故选D【点睛】本题考查对数性质的简单应用,属于基础题目10、B【解析】,阴影部分表示的集合为,选B.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、①.②.【解析】利用基本不等式可得答案.【详解】因为,所以,当且仅当即等号成立.故答案为:;.12、【解析】设点A是角终边与单位圆的交点,根据三角函数的定义及平方关系求出,,再利用诱导公式求出,即可得出答案.【详解】解:设点A是角的终边与单位圆的交点,因为点A在单位圆上且位于第三象限,点A的纵坐标为,所以,,因为点A沿单位圆逆时针运动到点B,所经过的弧长为,所以,所以点的横坐标为,纵坐标为,即点B的坐标为.故答案为:.13、-1【解析】原式)(.故答案为【点睛】本题的关键点有:先切化弦,再通分;利用辅助角公式化简;同角互化.14、②③【解析】化简函数,结合三角函数的图象变换,可判定①不正确;根据正弦型函数的单调的方法,可判定②正确;令,求得,可判定③正确;由,得到,结合三角函数的性质,可判定④正确.【详解】由函数,对于①中,将函数的图象向右平移个单位长度,得到,所以①不正确;对于②中,令,解得,当时,可得,即函数在上单调递增,所以函数在上单调递增,所以②正确;对于③中,令,可得,解得,当时,可得;当时,可得,所以内有2个零点,所以③正确;对于④中,由,可得,当时,即时,函数取得最大值,最大值为,所以④不正确.故答案为:②③.15、①④【解析】①由,解得.可得函数单调增区间;②函数在定义域内不具有单调性;③由,即可得出函数的最小正周期;④利用诱导公式可得函数,即可得出奇偶性【详解】解:①由,解得.可知:函数的单调增区间是,,,故①正确;②函数在定义域内不具有单调性,故②不正确;③,因此函数的最小正周期是,故③不正确;④函数是偶函数,故④正确其中正确的是①④故答案为:①④【点睛】本题考查了三角函数的图象与性质,考查了推理能力与计算能力,属于基础题三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)单调递减区间为,单调递增区间为【解析】(1)根据最值求的值;根据周期求的值;把点代入求的值.(2)首先根据图象的变换求出的解析式,然后利用整体代入的方法即可求出的单调区间.【小问1详解】由图可知,所以,.又,所以,因为,所以.因为,所以,即,又|,得,所以.【小问2详解】由题意得,由,得,故的单调递减区间为,由,得,故的单调递增区间为.17、(1)(2)【解析】(1)首先求出的坐标,再根据数量积、向量夹角的坐标公式计算可得;(2)根据数量积的坐标公式、二倍角公式以及辅助角公式化简函数解析式,再根据的取值范围,求出的范围,最后根据正弦函数的性质计算可得;【小问1详解】解:因为,当时,,又.所以,,,所以,因为,所以向量与的夹角为.【小问2详解】解:因为,,所以,当时,,所以,则因此函数在时的值域为18、(1);(2)【解析】(1)设,根据向量相等的坐标表示可得答案;(2)设,建立方程,解之可得答案【详解】解:(1)设,由点,所以,又,所以,解得所以点,所以;(2)若点,所以,,设,即,解得所以用基底表示19、(1)(2)【解析】(1)利用换元法令,求得的表达式,代入即可求得参数,即可得的解析式;(2)根据函数单调性,即可求得在上的值域.【详解】(1)令,则,则.因为,所以,解得.故的解析式为.(2)由(1)知,在上为增函数.因为,,所以在上的值域为.【点睛】本题考查了换元法求二次函数的解析式,根据函数单调性求函数的值域,属于基础题.20、(1);(2),;(3)见解析【解析】(1)由函数的最值求出,由周期求出,由五点法作图求出的值,可得函数的解析式(2)利用正弦函数的单调性,求得函数)的单调递增区间(3)利用正弦函数的定义域、值域,求得函数)在区间上的最大值和最小值试题解析:(1)00200根据表格可得再根据五点法作图可得,故解析式为:(2)令函数的单调递增区间为,.(3)因为,所以.得:.所以,当即时,在区间上的最小值为.当即时,在区

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论