版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省抚顺中学2023年数学高一上期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.如图,一根绝对刚性且长度不变、质量可忽略不计线,一端固定,另一端悬挂一个沙漏让沙漏在偏离平衡位置一定角度后在重力作用下在铅垂面内做周期摆动.设线长为,沙漏摆动时离开平衡位置的位移(单位:cm)与时间(单位:s)的函数关系是,.若,要使沙漏摆动的最小正周期是,则线长约为()A.5m B.C. D.20m2.在空间给出下面四个命题(其中、为不同的两条直线),、为不同的两个平面)①②③④其中正确的命题个数有A.1个 B.2个C.3个 D.4个3.下列各组函数是同一函数的是()①与;②与;③与;④与A.①② B.①③C.③④ D.①④4.命题P:“,”的否定为A., B.,C., D.,5.已知直线与平行,则实数的取值是A.-1或2 B.0或1C.-1 D.26.函数部分图象大致为()A. B.C. D.7.若a=20.5,b=logπ3,c=log20.3,则()A. B.C. D.8.圆关于直线对称的圆的方程为A. B.C. D.9.已知点,点在轴上且到两点的距离相等,则点的坐标为A.(-3,0,0) B.(0,-3,0)C.(0,0,3) D.(0,0,-3)10.函数f(x)=A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)11.化简A. B.C.1 D.12.已知,若实数满足,且,实数满足,那么下列不等式中,一定成立的是A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.圆:与圆:的公切线条数为____________.14.已知圆柱的底面半径为,高为2,若该圆柱的两个底面的圆周都在一个球面上,则这个球的表面积为______15.若关于的不等式的解集为,则实数__________16.已知函数的图象恒过定点A,若点A在一次函数的图象上,其中,则的最小值为_____________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知集合,集合.(1)求.(2)求,求的取值范围.18.已知函数(1)判断函数f(x)的单调性,并用定义给出证明;(2)解不等式:;(3)若关于x方程只有一个实根,求实数m的取值范围19.已知函数.(1)求函数的定义域;(2)若实数,且,求的取值范围.20.已知函数满足(1)求的解析式,并求在上的值域;(2)若对,且,都有成立,求实数k的取值范围21.已知的三个顶点是,直线过点且与边所在直线平行.(1)求直线的方程;(2)求的面积.22.在平面四边形中(如图甲),已知,且现将平面四边形沿折起,使平面平面(如图乙),设点分别为的中点.(1)求证:平面平面;(2)若三棱锥的体积为,求的长.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】根据余弦函数的周期公式计算,即可求得答案.【详解】因为函数最小正周期是,故,即,解得(m),故选:A2、C【解析】:①若α,则,根据线面垂直的性质可知正确;②若,则;不正确,也可能是m在α内;错误;③若,则;据线面垂直的判定定理可知正确;④若,根据线面平行判定的定理可知正确得到①③④正确,故选C3、C【解析】定义域相同,对应关系一致的函数是同一函数,由此逐项判断即可.【详解】①中的定义域为,的定义域也是,但与对应关系不一致,所以①不是同一函数;②中与定义域都是R,但与对应关系不一致,所以②不是同一函数;③中与定义域都是,且,对应关系一致,所以③是同一函数;④中与定义域和对应关系都一致,所以④是同一函数.故选C【点睛】本题主要考查同一函数的概念,只需定义域和对应关系都一致即可,属于基础题型.4、B【解析】“全称命题”的否定是“特称命题”根据全称命题的否定写出即可【详解】解:命题P:“,”的否定是:,故选B【点睛】本题考察了“全称命题”的否定是“特称命题”,属于基础题.5、C【解析】因为两直线的斜率都存在,由与平行得,当时,两直线重合,,故选C.6、A【解析】根据函数的解析式可判断函数为奇函数,再根据函数的零点个数可得正确的选项.【详解】因为,所以为奇函数,图象关于原点对称,故排除B;令,即,解得,即只有一个零点,故排除C,D故选:A7、D【解析】利用对数函数与指数函数的单调性即可得出【详解】∵a=20.5>1,1>b=logπ3>0,c=log20.3<0,∴a>b>c.故选D【点睛】本题考查了对数函数与指数函数的单调性,属于基础题8、A【解析】由题意得,圆心坐标为,设圆心关于直线的对称点为,则,解得,所以对称圆方程为考点:点关于直线的对称点;圆的标准方程9、D【解析】设点,根据点到两点距离相等,列出方程,即可求解.【详解】根据题意,可设点,因为点到两点的距离相等,可得,即,解得,所以整理得点的坐标为.故选:D.10、C【解析】,所以零点在区间(0,1)上考点:零点存在性定理11、D【解析】先考虑分母化简,利用降次公式,正切的两角和与差公式打开,整理,可得答案【详解】化简分母得.故原式等于.故选D【点睛】本题主要考查了两角和与差公式以及倍角公式.属于基础题12、B【解析】∵在上是增函数,且,中一项为负,两项为正数;或者三项均为负数;即:;或由于实数x0是函数的一个零点,当时,当时,故选B二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、3【解析】将两圆的公切线条数问题转化为圆与圆的位置关系,然后由两圆心之间的距离与两半径之间的关系判断即可.【详解】圆:,圆心,半径;圆:,圆心,半径.因为,所以两圆外切,所以两圆的公切线条数为3.故答案为:314、【解析】直接利用圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,利用勾股定理求出的值,然后利用球体的表面积公式可得出答案【详解】设球的半径为,由圆柱的性质可得,圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,因为圆柱的底面半径为,高为2,所以,,因此,这个球的表面积为,故答案为【点睛】本题主要圆柱的几何性质,考查球体表面积的计算,意在考查空间想象能力以及对基础知识的理解与应用,属于中等题15、【解析】先由不等式的解得到对应方程的根,再利用韦达定理,结合解得参数a即可.【详解】关于的不等式的解集为,则方程的两根为,则,则由,得,即,故.故答案为:.16、4【解析】由题意可知定点A(1,1),所以m+n=1,因为,所以,当时,的最小值为4.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)由不等式,求得,即可求解;(2)由,得到,列出不等式组,即可求解.【小问1详解】解:由,即,可得,可得集合.【小问2详解】解:因为,且集合,又因为,即,当时,即,可得,此时满足;当时,则满足,解得,综上可得,,即实数的取值范围.18、(1)f(x)在R上单调递增;证明见解析;(2);(3){-3}(1,+∞).【解析】(1)利用函数单调性的定义及指数函数的性质即得;(2)由题可得,然后利用函数单调性即得;(3)由题可得方程有且只有一个正数根,分m=1,m≠1讨论,利用二次函数的性质可得.【小问1详解】f(x)在R上单调递增;任取x1,x2∈R,且x1<x2,则∵∴,∴即∴函数f(x)在R上单调递增【小问2详解】∵,∵,∴,又∵函数f(x)在R上单调递增,∴,∴不等式的解集为【小问3详解】由可得,,即,此方程有且只有一个实数解令,则t>0,问题转化为:方程有且只有一个正数根①当m=1时,,不合题意,②当m≠1时,(i)若△=0,则m=-3或,若m=-3,则,符合题意;若,则t=-2,不合题意,(ii)若△>0,则m<-3或,由题意,方程有一个正根和一个负根,即,解得m>1综上,实数m的取值范围是{-3}(1,+∞)19、(1);(2).【解析】(1)要使有意义,则即,要使有意义,则即求交集即可求函数的定义域;(2)实数,且,所以即可得出的取值范围.试题解析:(1)要使有意义,则即要使有意义,则即所以的定义域.(2)由(1)可得:即所以,故的取值范围是20、(1),(2)【解析】(1)由条件可得,然后可解出,然后利用对勾函数的知识可得答案;(2)设,条件中的不等式可变形为,即可得在区间(2,4)递增,然后分、、三种情况讨论求解即可.【小问1详解】因为①,所以②,联立①②解得.当时为增函数,时为减函数,因为所以【小问2详解】对,,,都有,不妨设,则由恒成立,也即可得函数在区间(2,4)递增;当,即时,满足题意;当,即时,为两个在上单调递增函数的和,则可得在单调递增,从而满足在(2,4)递增,符合题意;当,即时,,其在递减,在递增,若使在(2,4)递增,则只需;综上可得:21、(1)(2)【解析】(1)利用线线平行得到直线的斜率,由点斜式得直线方程;(2)利用点点距求得,利用点线距求得三角形的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师师徒结对计划
- 《材料成型工艺基础A》教学大纲
- 玉溪师范学院《网球》2023-2024学年第一学期期末试卷
- 施工现场项目部管理制度
- 火山引擎·数据飞轮-行业实践系列自皮书·银行业 -新一代全行级标签体系与标签应用篇 2024
- 2024年细微射频同轴电缆项目评估分析报告
- 2023年有机氟化工产品项目评估分析报告
- 投资学第7版 郎荣燊 思政大纲
- 2019粤教版 高中美术 选择性必修1 绘画《第二单元 练就创造美的巧手》大单元整体教学设计2020课标
- 2024届广西梧州柳州高考数学试题命题比赛模拟试卷
- 【8物(科)期中模拟】合肥市2023-2024学年八年级上学期期中模拟物理作业试卷
- 情商与智慧人生学习通超星期末考试答案章节答案2024年
- 部编人教版《道德与法治》六年级上册第6课《人大代表为人民》课件
- 液化气站双重预防体系手册
- 盘扣式卸料平台施工方案
- 《无人驾驶航空器飞行管理暂行条例》考试复习题库(含答案)
- 2024年榆林交通投资建设集团有限公司招聘笔试冲刺题(带答案解析)
- 空乘人员生涯发展展示
- 新探索研究生英语(基础级)读写教程参考答案Language-focus
- 习近平总书记关于教育的重要论述研究学习通章节答案期末考试题库2023年
- 2024年高中语文会考试题及答案
评论
0/150
提交评论