湖北省宜昌市长阳一中2024届高一数学第一学期期末质量检测模拟试题含解析_第1页
湖北省宜昌市长阳一中2024届高一数学第一学期期末质量检测模拟试题含解析_第2页
湖北省宜昌市长阳一中2024届高一数学第一学期期末质量检测模拟试题含解析_第3页
湖北省宜昌市长阳一中2024届高一数学第一学期期末质量检测模拟试题含解析_第4页
湖北省宜昌市长阳一中2024届高一数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省宜昌市长阳一中2024届高一数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知函数,若关于的不等式恰有一个整数解,则实数的最小值是A. B.C. D.2.设,则与终边相同的角的集合为A. B.C. D.3.已知函数,若,则函数的单调递减区间是A. B.C. D.4.如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是A.平面B.与是异面直线C.D.5.设集合,则()A. B.C.{2} D.{-2,2}6.已知函数,则的值为A. B.C. D.7.不等式成立x的取值集合为()A. B.C. D.8.若关于x的方程log12x=m1-mA.(0,1) B.(1,2)C.(-∞,1)∪(2,+∞) D.(-∞,0)∪(1,+∞)9.在去年的足球联赛上,一队每场比赛平均失球个数是1.5,全年比赛失球个数的标准差是1.1;二队每场比赛平均失球个数是2.1,全年比赛失球个数的标准差是0.4.则下列说法错误的是()A.平均来说一队比二队防守技术好 B.二队很少失球C.一队有时表现差,有时表现又非常好 D.二队比一队技术水平更不稳定10.函数,的最小正周期是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.将正方形沿对角线折成直二面角,有如下四个结论:①;②是等边三角形;③与所成的角为,④取中点,则为二面角的平面角其中正确结论是__________.(写出所有正确结论的序号)12.若,则的取值范围为___________.13.①函数y=sin2x的单调增区间是[],(k∈Z);②函数y=tanx在它的定义域内是增函数;③函数y=|cos2x|的周期是π;④函数y=sin()是偶函数;其中正确的是____________14.如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=AB,则下列结论正确的是_____.(填序号)①PB⊥AD;②平面PAB⊥平面PBC;③直线BC∥平面PAE;④sin∠PDA15.已知关于的不等式的解集为,其中,则的最小值是___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.某种蔬菜从1月1日起开始上市,通过市场调查,得到该蔬菜种植成本(单位:元/)与上市时间(单位:10天)数据如下表:时间51125种植成本1510.815(1)根据上表数据,从下列函数:,,,中(其中),选取一个合适的函数模型描述该蔬菜种植成本与上市时间的变化关系;(2)利用你选取的函数模型,求该蔬菜种植成本最低时的上市时间及最低种植成本.17.计算:18.已知函数,其中.(1)若对任意实数,恒有,求的取值范围;(2)是否存在实数,使得且?若存在,则求的取值范围;若不存在,则加以证明.19.已知(1)若p为真命题,求实数x的取值范围(2)若p为q成立的充分不必要条件,求实数a的取值范围20.已知(1)求;(2)若,求.21.已知函数.(1)判断并证明函数的奇偶性;(2)判断当时函数的单调性,并用定义证明.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】将看作整体,先求的取值范围,再根据不等式恰有一个整点和函数的图像,推断参数,的取值范围【详解】做出函数的图像如图实线部分所示,由,得,若,则满足不等式,不等式至少有两个整数解,不满足题意,故,所以,且整数解只能是4,当时,,所以,选择A【点睛】本题考查了分段函数的性质,一元二次不等式的解法,及整体代换思想,数形结合思想的应用,需要根据题设条件,将数学语言转化为图形表达,再转化为参数的取值范围2、B【解析】由终边相同的角的概念,可直接得出结果.【详解】因为,所以与终边相同的角为.故选B【点睛】本题主要考查终边相同的角,熟记概念即可得出结果,属于基础题型.3、D【解析】由判断取值范围,再由复合函数单调性的原则求得函数的单调递减区间【详解】,所以,则为单调增函数,又因为在上单调递减,在上单调递增,所以的单调减区间为,选择D【点睛】复合函数的单调性判断遵循“同增异减”的原则,所以需先判断构成复合函数的两个函数的单调性,再判断原函数的单调性4、D【解析】因为三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以对于A,AC与AB夹角为60°,即两直线不垂直,所以AC不可能垂直于平面ABB1A1;故A错误;对于B,CC1与B1E都在平面CC1BB1中不平行,故相交;所以B错误;对于C,A1C1,B1E是异面直线;故C错误;对于D,因为几何体是三棱柱,并且侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1;故选D.5、C【解析】解一元二次不等式,求出集合B,解得集合A,根据集合的交集运算求得答案.【详解】由题意解得:,故,或,所以,故选:C6、C【解析】由,故选C7、B【解析】先求出时,不等式的解集,然后根据周期性即可得答案.【详解】解:不等式,当时,由可得,又最小正周期为,所以不等式成立的x的取值集合为.故选:B.8、A【解析】由题意可得:函数y=log12x∴∴∴实数m的取值范围是(0故选A点睛:本小题考查的是学生对函数最值的应用的知识点的掌握.本题在解答时应该先将函数y=log12x在区间(0,9、B【解析】利用平均数和标准差的定义及意义即可求解.【详解】对于A,因为一队每场比赛平均失球数是1.5,二队每场比赛平均失球数是2.1,所以平均说来一队比二队防守技术好,故A正确;对于B,因为二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4,所以二队经常失球,故B错误;对于C,因为一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,所以一队有时表现很差,有时表现又非常好,故C正确;对于D,因为一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,所以二队比一队技术水平更稳定,故D正确;故选:B.10、C【解析】利用正弦型函数周期公式直接计算作答.【详解】函数的最小正周期.故选:C二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、①②④【解析】如图所示,取中点,则,,所以平面,从而可得,故①正确;设正方形边长为,则,所以,又因为,所以是等边三角形,故②正确;分别取,的中点为,,连接,,.则,且,,且,则是异面直线,所成的角在中,,,∴则是正三角形,故,③错误;如上图所示,由题意可得:,则,由可得,据此可知:为二面角的平面角,说法④正确.故答案为:①②④.点睛:(1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题12、【解析】一元二次不等式,对任意的实数都成立,与x轴最多有一个交点;由对勾函数的单调性可以求出m的范围.【详解】由,得.由题意可得,,即.因为,所以,故.故答案为:13、①④【解析】①由,解得.可得函数单调增区间;②函数在定义域内不具有单调性;③由,即可得出函数的最小正周期;④利用诱导公式可得函数,即可得出奇偶性【详解】解:①由,解得.可知:函数的单调增区间是,,,故①正确;②函数在定义域内不具有单调性,故②不正确;③,因此函数的最小正周期是,故③不正确;④函数是偶函数,故④正确其中正确的是①④故答案为:①④【点睛】本题考查了三角函数的图象与性质,考查了推理能力与计算能力,属于基础题14、④【解析】由题意,分别根据线面位置关系的判定定理和性质定理,逐项判定,即可得到答案.【详解】∵PA⊥平面ABC,如果PB⊥AD,可得AD⊥AB,但是AD与AB成60°,∴①不成立,过A作AG⊥PB于G,如果平面PAB⊥平面PBC,可得AG⊥BC,∵PA⊥BC,∴BC⊥平面PAB,∴BC⊥AB,矛盾,所以②不正确;BC与AE是相交直线,所以BC一定不与平面PAE平行,所以③不正确;在Rt△PAD中,由于AD=2AB=2PA,∴sin∠PDA,所以④正确;故答案为:④【点睛】本题考查线面位置关系判定与证明,考查线线角,属于基础题.熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.15、【解析】根据一元二次不等式解集的性质,结合基本不等式、对钩函数的单调性进行求解即可.【详解】因为关于的不等式的解集为,所以是方程的两个不相等的实根,因此有,因为,所以,当且仅当时取等号,即时取等号,,设,因为函数在上单调递增,所以当时,函数单调递增,所以,故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)该蔬菜上市150天时,该蔬菜种植成本最低为10(元/).【解析】(1)先作出散点图,根据散点图的分布即可判断只有模型符合,然后将数据代入建立方程组,求出参数.(2)由于模型为二次函数,结合定义域,利用配方法即可求出最低种植成本以及对应得上市时间.【详解】解:(1)以上市时间(单位:10天)为横坐标,以种植成本(单位/)为纵坐标,画出散点图(如图).根据点的分布特征,,,这三个函数模型与表格所提供的数据不吻合,只有函数模型与表格所提供的数据吻合最好,所以选取函数模型进行描述该蔬菜种植成本与上市时间的变化关系.将表格所提供的三组数据分别代入,得解得所以,描述该蔬菜种植成本与上市时间的变化关系的函数为.(2)由(1)知,所以当时,的最小值为10,即该蔬菜上市150天时,该蔬菜种植成本最低为10(元/).【点睛】判断模型的步骤:(1)作出散点图;(2)根据散点图点的分布,以及各个模型的图像特征作出判断;二次函数型最值问题常用方法:配方法,但要注意定义域.17、109【解析】化根式为分数指数幂,运用有理数指数幂的运算性质化简可求出值.【详解】原式=()6+1=22×33+2﹣1=108+2﹣1=109【点睛】本题考查根式的概念,将根式化为分数指数幂和其运算法则的应用,属于基础题.18、(1);(2)存在,.【解析】(1)首先求出在上的最大值,问题转化为对任意成立,然后化简不等式,参变分离构造即可.(2)分a>0和a<0两种情况讨论,去掉绝对值符号,转化为解不等式的问题.【小问1详解】,,,∴,∴原问题对任意成立,即对任意成立,即对任意成立,∴.故a的范围是:.【小问2详解】①,,∵,∴,∴不等式变为,∴;(2),,∵,∴此时无解.综上所述,存在满足题意.19、(1)(2)【解析】(1)根据命题为真可求不等式的解.(2)根据条件关系可得对应集合的包含关系,从而可求参数的取值范围.【小问1详解】因为p为真命题,故成立,故.【小问2详解】对应的集合为,对应的集合为,因为p为q成立的充分不必要条件,故为的真子集,故(等号

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论