河南省十所名校2024届数学高一上期末复习检测模拟试题含解析_第1页
河南省十所名校2024届数学高一上期末复习检测模拟试题含解析_第2页
河南省十所名校2024届数学高一上期末复习检测模拟试题含解析_第3页
河南省十所名校2024届数学高一上期末复习检测模拟试题含解析_第4页
河南省十所名校2024届数学高一上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省十所名校2024届数学高一上期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.在下列函数中,既是奇函数并且定义域为是()A. B.C. D.2.用b,表示a,b,c三个数中的最小值设函数,则函数的最大值为A.4 B.5C.6 D.73.若函数的零点所在的区间为,则实数a的取值范围是()A. B.C. D.4.已知,则的大小关系为()A B.C. D.5.已知,若,则x的取值范围为()A. B.C. D.6.过点且与直线平行的直线方程是()A. B.C. D.7.已知向量,其中,则的最小值为()A.1 B.2C. D.38.已知函数,下列结论正确的是()A.函数图像关于对称B.函数在上单调递增C.若,则D.函数的最小值为9.已知一个样本容量为7的样本的平均数为5,方差为2,现样本加入新数据4,5,6,此时样本容量为10,若此时平均数为,方差为,则()A., B.,C., D.,10.已知集合,,则A. B.C. D.11.已知函数()的部分图象如图所示,则的值分别为A. B.C. D.12.已知集合0,,1,,则A. B.1,C.0,1, D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.设函数.则函数的值域为___________;若方程在区间上的四个根分别为,,,,则___________.14.已知函数若存在实数使得函数的值域为,则实数的取值范围是__________15.已知点是角终边上任一点,则__________16.已知函数fx=2-ax,x≤1,ax-1,x>1①存在实数a,使得fx②对任意实数a(a>0且a≠1),fx都不是R③存在实数a,使得fx的值域为R④若a>3,则存在x0∈0,+其中所有正确结论的序号是___________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数.(1)求函数的最小正周期;(2)求函数的单调减区间;(3)当时,画出函数的图象.18.已知,,且函数有奇偶性,求a,b的值19.已知集合,集合.(Ⅰ)求、、;(Ⅱ)若集合且,求实数的取值范围.20.计算下列式子的值:(1);(2).21.如图,三棱柱中,侧棱垂直底面,,,点是棱的中点(1)证明:平面平面;(2)求三棱锥的体积22.已知二次函数满足.(1)求b,c的值;(2)若函数是奇函数,当时,,(ⅰ)直接写出的单调递减区间为;(ⅱ)若,求a的取值范围.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】分别判断每个函数的定义域和奇偶性即可.【详解】对A,的定义域为,故A错误;对B,是偶函数,故B错误;对C,令,的定义域为,且,所以为奇函数,故C正确.对D,的定义域为,故D错误.故选:C.2、B【解析】在同一坐标系内画出三个函数,,的图象,以此确定出函数图象,观察最大值的位置,通过求函数值,解出最大值【详解】如图所示:则的最大值为与交点的纵坐标,由,得即当时,故选B【点睛】本题考查了函数的概念、图象、最值问题利用了数形结合的方法关键是通过题意得出的简图3、C【解析】由函数的性质可得在上是增函数,再由函数零点存在定理列不等式组,即可求解得a的取值范围.【详解】易知函数在上单调递增,且函数零点所在的区间为,所以,解得故选:C4、B【解析】观察题中,不妨先构造函数比较大小,再利用中间量“1”比较与大小即可得出答案.【详解】由题意得,,由函数在上是增函数可得,由对数性质可知,,所以,故选:B5、C【解析】首先判断函数的单调性和定义域,再解抽象不等式.【详解】函数的定义域需满足,解得:,并且在区间上,函数单调递增,且,所以,即,解得:或.故选:C【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.6、D【解析】先由题意设所求直线为:,再由直线过点,即可求出结果.【详解】因为所求直线与直线平行,因此,可设所求直线为:,又所求直线过点,所以,解得,所求直线方程为:.故选D【点睛】本题主要考查求直线的方程,熟记直线方程的常见形式即可,属于基础题型.7、A【解析】利用向量坐标求模得方法,用表示,然后利用三角函数分析最小值【详解】因为,所以,因为,所以,故的最小值为.故选A【点睛】本题将三角函数与向量综合考察,利用三角函数得有界性,求模长得最值8、A【解析】本题首先可以去绝对值,将函数变成分段函数,然后根据函数解析式绘出函数图像,最后结合函数图像即可得出答案.【详解】由题意可得:,即可绘出函数图像,如下所示:故对称轴为,A正确;由图像易知,函数在上单调递增,上单调递减,B错误;要使,则,由图象可得或、或,故或或,C错误;当时,函数取最小值,最小值,D错误,故选:A【点睛】本题考查三角函数的相关性质,主要考查三角函数的对称轴、三角函数的单调性以及三角函数的最值,考查分段函数,考查数形结合思想,是难题.9、B【解析】设这10个数据分别为:,进而根据题意求出和,进而再根据平均数和方差的定义求得答案.【详解】设这10个数据分别为:,根据题意,,所以,.故选:B.10、C【解析】先写出A的补集,再根据交集运算求解即可.【详解】因为,所以,故选C.【点睛】本题主要考查了集合的补集,交集运算,属于容易题.11、B【解析】由条件知道:均是函数的对称中心,故这两个值应该是原式子分母的根,故得到,由图像知道周期是,故,故,再根据三角函数的对称中心得到,故如果,根据,得到故答案为B点睛:根据函数的图像求解析式,一般要考虑的是图像中的特殊点,代入原式子;再就是一些常见的规律,分式型的图像一般是有渐近线的,且渐近线是分母没有意义的点;还有常用的是函数的极限值等等方法12、A【解析】直接利用交集的运算法则化简求解即可【详解】集合,,则,故选A【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、①.②.【解析】根据二倍角公式,化简可得,分别讨论位于第一、二、三、四象限,结合辅助角公式,可得的解析式,根据的范围,即可得值域;作出图象与,结合图象的对称性,可得答案.【详解】由题意得当时,即时,,又,所以;当时,即时,,又,所以;当时,即时,,又,所以;当时,即时,,又,所以;综上:函数的值域为.因为,所以,所以,作出图象与图象,如下如所示由图象可得,所以故答案为:;14、【解析】当时,函数为减函数,且在区间左端点处有令,解得令,解得的值域为,当时,fx=x在,上单调递增,在上单调递减,从而当时,函数有最小值,即为函数在右端点的函数值为的值域为,则实数的取值范围是点睛:本题主要考查的是分段函数的应用.当时,函数为减函数,且在区间左端点处有,当时,在,上单调递增,在上单调递减,从而当时,函数有最小值,即为,函数在右端点的函数值为,结合图象即可求出答案15、##【解析】将所求式子,利用二倍角公式和平方关系化为,然后由商数关系弦化切,结合三角函数的定义即可求解.【详解】解:因为点是角终边上任一点,所以,所以,故答案为:.16、①②④【解析】通过举反例判断①.,利用分段函数的单调性判断②③,求出y=2-ax关于y轴的对称函数为y=a-2x,利用y=a-2x与【详解】当a=2时,fx=0,x≤1,2x-1,x>1当x>1时,若fx是R上的减函数,则2-a<00<a<12-a≥当0<a<1时,y=ax-1单减,且当x>1时,值域为0,1,而此时y=2-ax单增,最大值为2-a,所以函数当1<a<2时,y=2-ax单增,y=ax-1单增,若fx的值域为R,则2-a≥a1-1=1,所以a≤1,与由①可知,当a=2时,函数fx值域不为R;当a>2时,y=2-ax单减,最小值为2-a,y=ax-1单增,且ax-1>1又y=2-ax关于y轴的对称函数为y=a-2x,若a>3,则a-2>1=a1-1=1,但指数函数y=ax-1的增长速度快于函数y=a-2故答案为:①②④三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2);(2)详见解析.【解析】(1)利用二倍角公式和辅助角法得到函数为,再利用周期公式求解;所以函数的周期为;(2)令,利用正弦函数的性质求解;(3)由列表,利用“五点法”画出函数图象.:【详解】(1),,,所以函数的周期为;(2)令,解得,所以函数的单调减区间是;(3)由列表如下:0xy0-2020则函数的图象如下:.18、为奇函数,,【解析】由函数奇偶性的定义列方程求解即可【详解】若为奇函数,则,所以恒成立,即,所以恒成立,所以,解得,所以当为奇函数时,,若为偶函数,则,所以恒成立,得,得,不合题意,所以不可能是偶函数,综上,为奇函数,,19、(1),,;(2).【解析】(1)通过解不等式求得,故可求得,.求得,故可得.(2)由可得,结合数轴转化为不等式组求解即可试题解析:(1),,∴,,∵,∴.(2)∵,∴,∴,解得.∴实数的取值范围为[20、(1)0(2)2【解析】(1)利用诱导公式化简每部分,化简求值;(2)每一部分都化简成以10为底的对数,按照对数运算公式化简求值.【详解】(1)解:原式.(2)解:原式.【点睛】本题考查三角函数诱导公式和对数运算公式化简求值,意在考查基本公式和计算能力,属于基础题型.21、(1)证明见解析;(2)【解析】(1)由题意得,,即可得到平面,从而得到⊥,再根据,得到,证得平面,即可得证;(2)首先求出,利用勾股定理求出,即可求出,再根据锥体的体积公式计算可得【详解】解:(1)证明:由题设知,,,平面,所以平面,又因为平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论