河北省唐山市遵化一中2023-2024学年高一数学第一学期期末教学质量检测模拟试题含解析_第1页
河北省唐山市遵化一中2023-2024学年高一数学第一学期期末教学质量检测模拟试题含解析_第2页
河北省唐山市遵化一中2023-2024学年高一数学第一学期期末教学质量检测模拟试题含解析_第3页
河北省唐山市遵化一中2023-2024学年高一数学第一学期期末教学质量检测模拟试题含解析_第4页
河北省唐山市遵化一中2023-2024学年高一数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省唐山市遵化一中2023-2024学年高一数学第一学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.若无论实数取何值,直线与圆相交,则的取值范围为()A. B.C. D.2.如图,一根绝对刚性且长度不变、质量可忽略不计线,一端固定,另一端悬挂一个沙漏让沙漏在偏离平衡位置一定角度后在重力作用下在铅垂面内做周期摆动.设线长为,沙漏摆动时离开平衡位置的位移(单位:cm)与时间(单位:s)的函数关系是,.若,要使沙漏摆动的最小正周期是,则线长约为()A.5m B.C. D.20m3.已知函数,则下列结论不正确的是()A. B.是的一个周期C.的图象关于点对称 D.的定义域是4.已知函数为定义在上的偶函数,在上单调递减,并且,则实数的取值范围是()A. B.C. D.5.下列各式不正确的是()A.sin(α+)=-sinα B.cos(α+)=-sinαC.sin(-α-2)=-sinα D.cos(α-)=sinα6.若条件p:,q:,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既非充分也非必要条件7.幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的图象是A. B.C. D.8.下列说法正确的是()A.锐角是第一象限角 B.第二象限角是钝角C.第一象限角是锐角 D.第四象限角是负角9.将函数的图象沿轴向右平移个单位后,得到的函数图象关于轴对称,则的值可以是()A. B.C. D.10.已知圆与圆相离,则的取值范围()A. B.C. D.11.设定义在上的函数满足:当时,总有,且,则不等式的解集为()A. B.C. D.12.某单位共有名职工,其中不到岁的有人,岁的有人,岁及以上的有人,现用分层抽样的方法,从中抽出名职工了解他们的健康情况.如果已知岁的职工抽取了人,则岁及以上的职工抽取的人数为()A. B.C. D.二、填空题(本大题共4小题,共20分)13.函数(且)的图象必经过点___________.14.已知角的终边过点,则_______15.将正方形沿对角线折成直二面角,有如下四个结论:①;②是等边三角形;③与所成的角为,④取中点,则为二面角的平面角其中正确结论是__________.(写出所有正确结论的序号)16.若sinα<0且tanα>0,则α是第___________象限角三、解答题(本大题共6小题,共70分)17.在平面内给定三个向量(1)求满足的实数m,n的值;(2)若向量满足,且,求向量的坐标18.已知函数(1)若在区间上有最小值为,求实数m的值;(2)若时,对任意的,总有,求实数m的取值范围19.已知圆经过,两点,且圆心在直线上()求圆的方程()过的直线与圆相交于,且,求直线的方程20.△ABC的顶点坐标分别为A(1,3),B(5,7),C(10,12),求BC边上的高所在的直线的方程21.已知的三个顶点是,直线过点且与边所在直线平行.(1)求直线的方程;(2)求的面积.22.已知函数,,.(1)若,求函数的解析式;(2)试判断函数在区间上的单调性,并用函数单调性定义证明.

参考答案一、选择题(本大题共12小题,共60分)1、A【解析】利用二元二次方程表示圆的条件及点与圆的位置关系即得.【详解】由圆,可知圆,∴,又∵直线,即,恒过定点,∴点在圆的内部,∴,即,综上,.故选:A.2、A【解析】根据余弦函数的周期公式计算,即可求得答案.【详解】因为函数最小正周期是,故,即,解得(m),故选:A3、C【解析】画出函数的图象,观察图象可解答.【详解】画出函数的图象,易得的周期为,且是偶函数,定义域是,故A,B,D正确;点不是函数的对称中心,C错误.故选:C4、D【解析】利用函数的奇偶性得到,再解不等式组即得解.【详解】解:由题得.因为在上单调递减,并且,所以,所以或.故选:D5、B【解析】将视为锐角,根据“奇变偶不变,符号看象限”得出答案.【详解】将视为锐角,∵在第三象限,正弦为负值,且是的2倍为偶数,不改变三角函数的名称,∴,A正确;∵在第四象限,余弦为正值,且是的3倍为奇数数,要改变三角函数的名称,∴,B错误;∵,在第四象限,正弦为负值,且0是的0倍为偶数,不改变三角函数的名称,∴,C正确;∵在第四象限,余弦为正值,且是的1倍为奇数,要改变三角函数的名称,∴,D正确.故选:B.6、B【解析】由条件推结论可判断充分性,由结论推条件可判断必要性【详解】由不能推出,例如,但必有,所以p是q成立的必要不充分条件.故选:B.7、C【解析】设出函数的解析式,根据幂函数y=f(x)的图象过点(4,2),构造方程求出指数的值,再结合函数的解析式研究其性质即可得到图象【详解】设幂函数的解析式为y=xa,∵幂函数y=f(x)的图象过点(4,2),∴2=4a,解得a=∴,其定义域为[0,+∞),且是增函数,当0<x<1时,其图象在直线y=x的上方.对照选项故选C【点睛】本题考查的知识点是函数解析式的求解及幂函数图象及其与指数的关系,其中对于已经知道函数类型求解析式的问题,要使用待定系数法8、A【解析】根据角的定义判断【详解】锐角大于而小于,是第一象限角,但第一象限角不都是锐角,第二象限角不都是钝角,第四象限角有正角有负角.只有A正确故选:A9、C【解析】首先求平移后的解析式,再根据函数关于轴对称,当时,,求的值.【详解】函数的图象沿轴向右平移个单位后的解析式是,若函数图象关于轴对称,当时,,解得:,当时,.故选:C【点睛】本题考查函数图象变换,以及根据函数性质求参数的取值,意在考查基本知识,属于基础题型.10、D【解析】∵圆的圆心为,半径为,圆的标准方程为,则又两圆相离,则:,本题选择D选项.点睛:判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法11、A【解析】将不等式变形后再构造函数,然后利用单调性解不等式即可.【详解】由,令,可知当时,,所以在定义域上单调递减,又,即,所以由单调性解得.故选:A12、A【解析】计算抽样比例,求出不到35岁的应抽取人数,再求50岁及以上的应抽取人数.【详解】计算抽样比例为,所以不到35岁的应抽取(人,所以50岁及以上的应抽取(人.故选:.二、填空题(本大题共4小题,共20分)13、【解析】令得,把代入函数的解析式得,即得解.【详解】解:因为函数,其中,,令得,把代入函数的解析式得,所以函数(且)的图像必经过点的坐标为.故答案为:14、【解析】由三角函数定义可直接得到结果.【详解】的终边过点,故答案为:.15、①②④【解析】如图所示,取中点,则,,所以平面,从而可得,故①正确;设正方形边长为,则,所以,又因为,所以是等边三角形,故②正确;分别取,的中点为,,连接,,.则,且,,且,则是异面直线,所成的角在中,,,∴则是正三角形,故,③错误;如上图所示,由题意可得:,则,由可得,据此可知:为二面角的平面角,说法④正确.故答案为:①②④.点睛:(1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题16、第三象限角【解析】当sinα<0,可知α是第三或第四象限角,又tanα>0,可知α是第一或第三象限角,所以当sinα<0且tanα>0,则α是第三象限角考点:三角函数值的象限符号.三、解答题(本大题共6小题,共70分)17、(1);(2)或【解析】(1)根据向量的坐标运算求解即可.(2)设向量再根据平行与模长的公式列式求解即可.【详解】(1)由已知条件以及,可得,即解得(2)设向量,则,.∵,∴解得或∴向量的坐标为或.【点睛】本题主要考查了向量坐标的运算以及平行的与模长的公式,属于中等题型.18、(1)或;(2).【解析】(1)可知的对称轴为,讨论对称轴的范围求出最小值即可得出;(2)不等式等价于,求出最大值和最小值即可解出.【详解】(1)可知的对称轴为,开口向上,当,即时,,解得或(舍),∴当,即时,,解得,∴综上,或(2)由题意得,对,∵,,∴,∴,解得,∴【点睛】本题考查含参二次函数的最值问题,属于中档题.19、(1)(2)x=2或15x﹣8y﹣30=0【解析】(1)由圆心C在直线2x﹣y﹣2=0上,可设圆C的圆心为(a,2a﹣2),半径为r,再由圆C过点A(1,4),B(3,6)两点,列关于a,r的方程组,求解可得a,r的值,则圆C的方程可求;(2)当直线l的斜率不存在时,直线方程为x=2,求得M,N的坐标,可得|MN|=2,满足题意;当直线l的斜率不存在时,设直线l的方程为y=k(x﹣2),则kx﹣y﹣2k=0,由|MN|=2,可得圆心到直线的距离为1,由点到直线的距离公式列式求得k值,则直线l的方程可求【详解】解:(1)∵圆心C在直线2x﹣y﹣2=0上,∴设圆C的圆心为(a,2a﹣2),半径为r,又∵圆C过点A(1,4),B(3,6)两点,∴,解得,则圆C的方程为(x﹣3)2+(y﹣4)2=4;(2)当直线l的斜率不存在时,直线方程为x=2,联立,解得M(2,4),N(2,4),此时|MN|;当直线l的斜率存在时,设直线l的方程为y=k(x﹣2),则kx﹣y﹣2k=0,∵|MN|=2,∴圆心到直线的距离为d,解得k,则直线l的方程为15x﹣8y﹣30=0,综上,直线l的方程为x=2或15x﹣8y﹣30=0【点睛】本题考查圆的方程的求法,考查直线与圆位置关系的应用,考查垂径定理的应用,是中档题20、【解析】设所求直线方程的斜率为k.根据以,先求出高所在直线的斜率,进而利用点斜式即可求出;【详解】设所求直线方程的斜率为k.因为所求直线与直线BC垂直,所以所以垂线方程为即.【点睛】熟练掌握两条直线垂直与斜率的关系、点斜式是解题的关键21、(1)(2)【解析】(1)利用线线平行得到直线的斜率,由点斜式得直线方程;(2)利用点点距求得,利用点线距求得三角形的高,从而得到的面积.试题解析:(1)由题意可知:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论