




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省通许县丽星中学2024届高一上数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与圆交于两点,关于直线对称,则实数的值为()A. B.C. D.2.从数字中随机取两个不同的数,分别记为和,则为整数的概率是()A. B.C. D.3.17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法,数学家拉普拉斯称赞为“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知,,设,则所在的区间为()A. B.C. D.4.给出下列四种说法:①若平面,直线,则;②若直线,直线,直线,则;③若平面,直线,则;④若直线,,则.其中正确说法的个数为()A.个 B.个C.个 D.个5.已知扇形的圆心角为,半径为10,则扇形的弧长为()A. B.1C.2 D.46.设向量不共线,向量与共线,则实数()A. B.C.1 D.27.直三棱柱中,若,则异面直线与所成角的余弦值为A.0 B.C. D.8.对于任意实数,给定下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则9.函数的一个单调递增区间是()A. B.C. D.10.已知函数为偶函数,且在上单调递减,则的解集为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数,,则_________;当时,方程的所有实数根的和为__________.12.已知点为圆上的动点,则的最小值为__________13.给出下列说法:①和直线都相交的两条直线在同一个平面内;②三条两两相交的直线一定在同一个平面内;③有三个不同公共点的两个平面重合;④两两相交且不过同一点的四条直线共面其中正确说法的序号是______14.已知向量,若,则实数的值为______15.命题“,”的否定是______16.已知定义在上的偶函数在上递减,且,则不等式的解集为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知关于x的不等式的解集为R,记实数a的所有取值构成的集合为M.(1)求M;(2)若,对,有,求t的最小值.18.(1)求值:;(2)求值:;(3)已知,求的值19.已知函数在一个周期内的图象如图所示(1)求的解析式;(2)直接写出在区间上的单调区间;(3)已知,都成立,直接写出一个满足题意的值20.已知二次函数满足对任意,都有;;的图象与轴的两个交点之间的距离为.(1)求的解析式;(2)记,(i)若为单调函数,求的取值范围;(ii)记的最小值为,若方程有两个不等的根,求的取值范围.21.已知关于x的不等式对恒成立.(1)求的取值范围;(2)当取得最小值时,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】所以直线过圆的圆心,圆的圆心为,,解得.故选A.【点睛】本题给出直线与圆相交,且两个交点关于已知直线对称,求参数的值.着重考查了直线与圆的位置关系等知识,属于基础题.2、B【解析】先计算出从数字中随机取两个不同的数,共有种情况,再求出满足为整数的情况,即可求出为整数的概率.【详解】解:从数字中随机取两个不同的数,则有种选法,有种选法,共有种情况;则满足为整数的情况如下:当时,或有种情况;当时,有种情况;当或时,则不可能为整数,故共有种情况,故为整数的概率是:.故选:B.3、C【解析】利用对数的运算性质求出,由此可得答案.【详解】,所以.故选:C4、D【解析】根据线面关系举反例否定命题,根据面面平行定义证命题正确性.【详解】若平面,直线,则可异面;若直线,直线,直线,则可相交,此时平行两平面交线;若直线,,则可相交,此时平行两平面交线;若平面,直线,则无交点,即;选D.【点睛】本题考查线面平行关系,考查空间想象能力以及简单推理能力.5、D【解析】由扇形的弧长公式运算可得解.【详解】解:因为扇形的圆心角为,半径为10,所以由弧长公式得:扇形的弧长为故选:D6、A【解析】由向量共线定理求解【详解】因为向量与共线,所以存在实数,使得,又向量不共线,所以,解得故选:A7、A【解析】连接,在正方形中,,又直三棱柱中,,即,所以面.所以,所以面,面,所以,即异面直线与所成角为90°,所以余弦值为0.故选A.8、C【解析】利用特殊值判断A、B、D,根据不等式的性质证明C;【详解】解:对于A:当时,若则,故A错误;对于B:若,,,,满足,则,,不成立,故B错误;对于C:若,则,所以,故C正确;对于D:若,满足,但是,故D错误;故选:C9、A【解析】利用正弦函数的性质,令即可求函数的递增区间,进而判断各选项是否符合要求.【详解】令,可得,当时,是的一个单调增区间,而其它选项不符合.故选:A10、B【解析】根据为偶函数,可得;根据在上递减得;然后解一元二次不等式可得【详解】解:为偶函数,所以,即,,由在上单调递减,所以,,可化为,即,解得或故选:【点睛】本题主要考查奇偶性与单调性的应用以及一元二次不等式的解法,还考查了运算求解的能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、①.0②.4【解析】直接计算,可以判断的图象和的图象都关于点中心对称,所以所以两个函数图象的交点都关于点对称,数形结合即可求解.【详解】因为,所以,分别作出函数与的图象,图象的对称中心为,令,可得,当时,,所以的对称中心为,所以两个函数图象的交点都关于点对称,当时,两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则,,所以,所以方程的所有实数根的和为,故答案为:,【点睛】关键点点睛:本题的关键点是判断出的图象和的图象都关于点中心对称,作出函数图象可知两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则和关于中心对称,和关于中心对称,所以,,即可求解.12、-4【解析】点为圆上的动点,所以.由,所以当时有最小值-4.故答案为-4.13、④【解析】利用正方体可判断①②的正误,利用公理3及其推论可判断③④的正误.【详解】如图,在正方体中,,,但是异面,故①错误.又交于点,但不共面,故②错误.如果两个平面有3个不同公共点,且它们共线,则这两个平面可以相交,故③错误.如图,因为,故共面于,因为,故,故即,而,故,故即即共面,故④正确.故答案为:④14、;【解析】由题意得15、.【解析】全称命题的否定:将任意改为存在并否定原结论,即可知原命题的否定.【详解】由全称命题的否定为特称命题,所以原命题的否定:.故答案为:.16、【解析】因为,而为偶函数,故,故原不等式等价于,也就是,所以即,填点睛:对于偶函数,有.解题时注意利用这个性质把未知区间的性质问题转化为已知区间上的性质问题去处理三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)1【解析】(1)分类讨论即可求得实数a的所有取值构成的集合M;(2)先求得的最大值2,再解不等式即可求得t的最小值.【小问1详解】当时,满足题意;当时,要使不等式的解集为R,必须,解得,综上可知,所以【小问2详解】∵,∴,∴,(当且仅当时取“=”)∴,∵,有,∴,∴,∴或,又,∴,∴t的最小值为1.18、(1)90;(2)0;(3).【解析】(1)利用指数幂的运算性质可求代数式的值.(2)利用对数的运算性质可求代数式的值.(3)将给定的代数式两边平方后得到,再次平方后则可求的值.【详解】(1)原式(2)原式(3)因为,两边平方得即所以即又,所以19、(1)(2)增区间为,减区间为(3)【解析】(1)根据图象确定周期可得出,再由图象过点求出即可得出解析式;(2)根据图象观察直接写出即可;(3)由知函数图象关于对称,由图象直接写即可.【小问1详解】由图可知,所以因,且,所以因为图象过点,所以所以所以所以因为,所以所以【小问2详解】在区间上,函数的增区间为,减区间为,【小问3详解】因为恒成立,所以函数图象关于对称,由图可知适合题意,(答案不唯一)20、(1);(2)(i);(ii)或.【解析】(1)根据二次函数的对称轴、求参数a、b、c,写出的解析式;(2)(i)利用二次函数的性质,结合的区间单调性求的取值范围;(ii)讨论、、,结合二次函数的性质求最小值的表达式,再令并应用数形结合的方法研究的零点情况求的取值范围.【详解】(1)设由题意知:对称轴,,又,则,,设的两根为,,则,,由已知:,解得.(2)(i),其对称轴为为单调函数,或,解得或.的取值范围是.(ii),,对称轴①当,即时,区间单调递增,.②当,即时,在区间单调递减,③当,即时,,函数零点即为方程的根令,即,作出的简图如图所示①当时,,或,解得或,有个零点;②当时,有唯一解,解得,有个零点;③当时,有两个不同解,,解得或,有4个零点;④当时,,,解得,有个零点;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国牛角擦行业投资前景及策略咨询研究报告
- 2025至2031年中国梅毒确诊试剂行业投资前景及策略咨询研究报告
- 2025至2031年中国智能积算仪行业投资前景及策略咨询研究报告
- 2025至2031年中国单缸液压圆锥破碎机行业投资前景及策略咨询研究报告
- 2025至2031年中国低弹牛津布行业投资前景及策略咨询研究报告
- 2025至2030年中国非线性编缉机数据监测研究报告
- 2025至2030年中国轮缘型钢数据监测研究报告
- 2025至2030年中国芦荟脱色全叶汁数据监测研究报告
- 2025至2030年中国相机皮套数据监测研究报告
- 2025至2030年中国生态活性刺参配合饲料数据监测研究报告
- 2024年山东新华书店集团限公司临沂市县分公司招聘录取人员(高频重点提升专题训练)共500题附带答案详解
- 公司员工外派协议书范文
- 2024年四川省南充市中考物理试卷真题(含官方答案)
- 信息科技重大版 七年级上册 互联网应用与创新 第二单元教学设计 互联网原理
- 2024年学位法学习解读课件
- 【基于PLC的停车场车位控制系统设计11000字(论文)】
- GB/T 43947-2024低速线控底盘通用技术要求
- 手术患者手术部位标识制度
- 剪叉式升降工作平台作业专项施工方案24
- 卒中后足内翻康复治疗
- 诊所申请医保定点资料模板(一套)
评论
0/150
提交评论