版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵阳县2023年高一上数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=的零点所在的一个区间是A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)2.实数,,的大小关系正确的是()A. B.C. D.3.已知函数的零点在区间上,则()A. B.C. D.4.已知集合,a=3.则下列关系式成立的是A.aAB.aAC.{a}AD.{a}∈A5.函数的最小值为()A.1 B.C. D.6.定义在上的偶函数在时为增函数,若实数满足,则的取值范围是A. B.C. D.7.《九章算术》中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=×(弦×矢+矢).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,半径为2米的弧田(如图2),则这个弧田面积大约是()平方米.(,结果保留整数)A.2 B.3C.4 D.58.已知,且,则下列不等式一定成立的是()A. B.C. D.9.若sin(),α是第三象限角,则sin()=()A. B.C. D.10.关于函数,下列说法正确的是()A.最小值为0 B.函数为奇函数C.函数是周期为周期函数 D.函数在区间上单调递减二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的图象过点,则___________.12.《三十六计》是中国古代兵法策略,是中国文化的瑰宝.“分离参数法”就是《三十六计》中的“调虎离山”之计在数学上的应用,例如,已知含参数的方程有解的问题,我们可分离出参数(调),将方程化为,根据的值域,求出的范围,继而求出的取值范围,已知,若关于x的方程有解,则实数的取值范围为___________.13.已知函数,则_________14.已知命题“,”是真命题,则实数的取值范围为__________15.已知函数,若存在,使得,则的取值范围为_____________.16.函数且的图象恒过定点__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某中学调查了某班全部45名学生参加社会实践活动和社会公益活动的情况,数据如表单位:人:参加社会公益活动未参加社会公益活动参加社会实践活动304未参加社会实践活动83从该班随机选1名学生,求该学生未参加社会公益活动也未参加社会实践活动的概率;在参加社会公益活动,但未参加社会实践活动的8名同学中,有5名男同学,,,,,三名女同学,,,现从这5名男同学和3名女同学中各随机选1人参加岗位体验活动,求被选中且未被选中的概率18.某学习小组在暑期社会实践活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以30天计)的日销售价格(元)与时间(天)的函数关系近似满足(为正常数).该商品的日销售量(个)与时间(天)部分数据如下表所示:(天)10202530(个)110120125120已知第10天该商品的日销售收入为121元.(I)求的值;(II)给出以下二种函数模型:①,②,请你根据上表中的数据,从中选择你认为最合适的一种函数来描述该商品的日销售量与时间的关系,并求出该函数的解析式;(III)求该商品的日销售收入(元)的最小值.(函数,在区间上单调递减,在区间上单调递增.性质直接应用.)19.已知函数的图象过点.(Ⅰ)求实数的值;(Ⅱ)若不等式恒成立,求实数的取值范围;(Ⅲ)若函数,,是否存在实数使得的最小值为,若存在请求出的值;若不存在,请说明理由.20.已知函数为偶函数,当时,,(a为常数).(1)当x<0时,求的解析式:(2)设函数在[0,5]上的最大值为,求的表达式;(3)对于(2)中的,试求满足的所有实数成的取值集合.21.(1)若是的根,求的值(2)若,,且,,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】因为函数f(x)=2+3x在其定义域内是递增的,那么根据f(-1)=,f(0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B考点:本试题主要考查了函数零点的问题的运用点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函数的零点的区间2、B【解析】根据指数函数、对数函数的单调性分别判断的取值范围,即可得结果.【详解】由对数函数的单调性可得,根据指数函数的单调性可得,即,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.3、C【解析】根据解析式,判断的单调性,结合零点存在定理,即可求得零点所在区间,结合题意,即可求得.【详解】函数的定义域为,且在上单调递增,故其至多一个零点;又,,故的零点在区间,故.故选:4、C【解析】集合,,所以{a}A故选C.5、D【解析】根据对数的运算法则,化简可得,分析即可得答案.【详解】由题意得,当时,的最小值为.故选:D6、C【解析】因为定义在上的偶函数,所以即又在时为增函数,则,解得故选点睛:本题考查了函数的奇偶性,单调性和运用,考查对数不等式的解法及运算能力,所求不等式中与由对数式运算法则可知互为相反数,与偶函数的性质结合可将不等式化简,借助函数在上是增函数可确定在为减函数,利用偶函数的对称性可得到自变量的范围,从而求得关于的不等式,结合对数函数单调性可得到的取值范围7、A【解析】先由已知条件求出,然后利用公式求解即可【详解】因为,所以,在中,,所以,所以,所以这个弧田面积为,故选:A8、D【解析】对A,B,C,利用特殊值即可判断,对D,利用不等式的性质即可判断.【详解】解:对A,令,,此时满足,但,故A错;对B,令,,此时满足,但,故B错;对C,若,,则,故C错;对D,,则,故D正确.故选:D.9、C【解析】由α是第三象限角,且sin(),可得为第二象限角,即可得,然后结合,利用两角和的正弦公式展开运算即可.【详解】解:因为α是第三象限角,则,又sin(),所以,即为第二象限角,则,则,故选:C.【点睛】本题考查了角的拼凑,重点考查了两角和的正弦公式,属基础题.10、D【解析】根据三角函数的性质,得到的最小值为,可判定A不正确;根据奇偶性的定义和三角函数的奇偶性,可判定C不正确;举例可判定C不正确;根据三角函数的单调性,可判定D正确.【详解】由题意,函数,当时,可得,所以,当时,可得,所以,所以函数的最小值为,所以A不正确;又由,所以函数为偶函数,所以B不正确;因为,,所以,所以不是的周期,所以C不正确;当时,,,当时,,即函数在区间上单调递减,又因为,所以函数在区间上单调递减,所以D正确.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由幂函数的解析式的形式可求出和的值,再将点代入可求的值,即可求解.【详解】因为是幂函数,所以,,又的图象过点,所以,解得,所以.故答案为:.12、【解析】参变分离可得,令,构造函数,利用导数求解函数单调性,分析可得的值域为,即得解【详解】由题意,,故又,,令故,令,故在单调递增由于时故的值域为故,即实数的取值范围为故答案为:13、1【解析】根据分段函数的定义即可求解.【详解】解:因为函数,所以,所以,故答案为:1.14、【解析】此题实质上是二次不等式的恒成立问题,因为,函数的图象抛物线开口向上,所以只要判别式不大于0即可【详解】解:因为命题“,”是真命题,所以不等式在上恒成立由函数的图象是一条开口向上的抛物线可知,判别式即解得所以实数的取值范围是故答案为:【点睛】本题主要考查全称命题或存在性命题的真假及应用,解题要注意的范围,如果,一定要注意数形结合;还应注意条件改为假命题,有时考虑它的否定是真命题,求出的范围.本题是一道基础题15、【解析】根据条件作出函数图象求解出的范围,利用和换元法将变形为二次函数的形式,从而求解出其取值范围.【详解】由解析式得大致图象如下图所示:由图可知:当时且,则令,解得:,,又,,,令,则,,即.故答案为:【点睛】思路点睛:根据分段函数函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.16、【解析】令真数为,求出的值,再代入函数解析式,即可得出函数的图象所过定点的坐标.【详解】令,得,且.函数的图象过定点.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】从该班随机选1名学生,利用古典概型能求出该学生未参加社会公益活动也未参加社会实践活动的概率基本事件总数,被选中且未被选中包含的基本事件个数,由此能求出被选中且未被选中的概率【详解】解:从该班随机选1名学生,该学生既未参加社会公益活动也未参加社会实践活动的概率在参加社会公益活动,但未参加社会实践活动的8名同学中,有5名男同学,,,,,三名女同学,,,现从这5名男同学和3名女同学中各随机选1人参加岗位体验活动,基本事件总数,被选中且未被选中包含的基本事件个数,被选中且未被选中的概率【点睛】本题考查概率的求法,考查古典概型等基础知识,属于基础题18、(I)1,(II);(III)121元【解析】(I)利用列方程,解方程求得的值.(II)根据题目所给表格的数据,判断出日销售量不单调,由此确定选择模型②.将表格数据代入,待定系数法求得的值,也即求得的解析式.(III)将写成分段函数的形式,由计算出日销售收入的解析式,根据函数的单调性求得的最小值.【详解】(I)依题意知第10天该商品的日销售收入为,解得.(II)由题中的数据知,当时间变化时,该商品的日销售量有增有减并不单调,故只能选②.从表中任意取两组值代入可求得(III)由(2)知∴当时,在区间上是单调递减的,在区间上是单调递增,所以当时,取得最小值,且;当时,是单调递减的,所以当时,取得最小值,且.综上所述,当时,取得最小值,且.故该商品的日销售收入的最小值为121元.【点睛】本小题主要考查函数模型在实际生活中的运用,考查利用函数的单调性求最值,考查运算求解能力,属于中档题.19、(1)(2)(3)【解析】(Ⅰ)根据图象过点,代入函数解析式求出k的值即可;(Ⅱ)令,则命题等价于,根据函数的单调性求出a的范围即可;(Ⅲ)根据二次函数的性质通过讨论m的范围,结合函数的最小值,求出m的值即可【详解】(I)函数的图象过点(II)由(I)知恒成立即恒成立令,则命题等价于而单调递增即(III),令当时,对称轴①当,即时,不符舍去.②当时,即时.符合题意.综上所述:【点睛】本题考查了对数函数的性质,考查函数的单调性、最值问题,考查转化思想以及分类讨论思想,换元思想,是一道中档题20、(1)f(x)=x2-2ax+1;(2);(3){m|或}【解析】(1)设x<0,则-x>0,所以f(-x)=(-x)2+2a(-x)+1=x2-2ax+1,再根据函数的奇偶性化简即得函数的解析式.(2)对a分两种情况讨论,利用二次函数的图像和性质即得的表达式.(3)由题得或,解不等式组即得解.【详解】(1)设x<0,则-x>0,所以f(-x)=(-x)2+2a(-x)+1=x2-2ax+1.又因为f(x)为偶函数,所以f(-x)=f(x),所以当x<0时,f(x)=x2-2ax+1.(2)当x[0,5],f(x)=x2+2ax+1,对称轴x=-a,①当-a≥,即a≤-时,g(a)=f(0)=1;②当-a<,即a>-时,g(a)=f(5)=10a+26综合以上.(3)由(2)知,当a≤-时,g(a)为常函数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理不良事件与隐患缺陷报告制度
- 2024炭黑买卖合同
- 2024年度房屋买卖合同:某卖方与买方之间的房屋买卖协议2篇
- 2024年专业汽车运输服务协议样本文书版B版
- 2024年城市公共自行车租赁合同3篇
- 2024家庭装修材料采购合同
- 2024年外教中国教学合同范本3篇
- 豆袋沙发产品原材料供应与需求分析
- 2024年医疗器械行业培训与技术转让合同3篇
- 2024年度高级软件销售综合服务协议版B版
- 《汽车营销方案》课件
- 【课件】校园安全系列之警惕“死亡游戏”主题班会课件
- 海鸥课件教学课件
- 河南省郑州市2023-2024学年高二上学期期末考试英语试题 附答案
- 人工智能语言与伦理学习通超星期末考试答案章节答案2024年
- 胡蜂蛰伤规范化诊治中国专家共识解读课件
- 电缆敷设专项施工方案
- 石油测井方案与应急处置预案
- 500地形图测绘技术设计方案
- GB/T 22838.6-2024卷烟和滤棒物理性能的测定第6部分:硬度
- 2023-2024年福建高中物理会考试卷(福建会考卷)
评论
0/150
提交评论