版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省衡阳一中2023年高一数学第一学期期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知函数是定义在上的奇函数,当时,,则当时,的表达式是()A. B.C. D.2.的图像是端点为且分别过和两点的两条射线,如图所示,则的解集为A.B.C.D.3.已知幂函数f(x)=xa的图象经过点(2,),则函数f(x)为()A.奇函数且在上单调递增 B.偶函数且在上单调递减C.非奇非偶函数且在上单调递增 D.非奇非偶函数且在上单调递减4.如图,边长为的正方形是一个水平放置的平面图形的直观图,则图形的面积是A. B.C. D.5.已知,若,则x的取值范围为()A. B.C. D.6.满足的集合的个数为()A. B.C. D.7.若,则a,b,c的大小关系是()A. B.C. D.8.已知集合,集合,则A∩B=()A. B.C. D.9.已知正实数x,y,z,满足,则()A. B.C. D.10.如图,在平面内放置两个相同的直角三角板,其中,且三点共线,则下列结论不成立的是A. B.C.与共线 D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.函数是幂函数且为偶函数,则m的值为_________12.已知函数,则使函数有零点的实数的取值范围是____________13.已知,,与的夹角为60°,则________.14.如图,已知△和△有一条边在同一条直线上,,,,在边上有个不同的点F,G,则的值为______15.已知直线经过点,且与直线平行,则直线的方程为__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.某校手工爱好者社团出售自制的工艺品,每件的售价在20元到40元之间时,其销售量(件)与售价(元/件)之间满足一次函数关系,部分对应数据如下表所示.(元/件)20212223……3940(件)440420400380……6040(1)求此一次函数的解析式;(2)若每件工艺品的成本是20元,在不考虑其他因素的情况下,每件工艺品的售价是多少时,利润最大?最大利润是多少?17.已知正项数列的前项和为,且和满足:(1)求的通项公式;(2)设,求的前项和;(3)在(2)的条件下,对任意,都成立,求整数的最大值18.计划建造一个室内面积为1500平方米的矩形温室大棚,并在温室大棚内建两个大小、形状完全相同的矩形养殖池,其中沿温室大棚前、后、左、右内墙各保留米宽的通道,两养殖池之间保留2米宽的通道.设温室的一边长度为米,两个养殖池的总面积为平方米,如图所示:(1)将表示为的函数,并写出定义域;(2)当取何值时,取最大值?最大值是多少?19.已知二次函数.(1)求的对称轴;(2)若,求的值及的最值.20.设,函数.(1)当时,写出的单调区间(不用写出求解过程);(2)若有两个零点,求的取值范围.21.已知函数,,.(1)若,求函数的解析式;(2)试判断函数在区间上的单调性,并用函数单调性定义证明.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】利用函数的奇偶性求在上的表达式.【详解】令,则,故,又是定义在上的奇函数,∴.故选:D.2、D【解析】作出g(x)=图象,它与f(x)的图象交点为和,由图象可得3、C【解析】根据已知求出a=,从而函数f(x)=,由此得到函数f(x)是非奇非偶函数且在(0,+∞)上单调递增【详解】∵幂函数f(x)=xa的图象经过点(2,),∴2a=,解得a=,∴函数f(x)=,∴函数f(x)是非奇非偶函数且在(0,+∞)上单调递增故选C【点睛】本题考查命题真假的判断,考查幂函数的性质等基础知识,考查运算求解能力,是基础题4、D【解析】根据直观图画出原图可得答案.【详解】由直观图画出原图,如图,因为,所以,,则图形的面积是.故选:D5、C【解析】首先判断函数的单调性和定义域,再解抽象不等式.【详解】函数的定义域需满足,解得:,并且在区间上,函数单调递增,且,所以,即,解得:或.故选:C【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.6、B【解析】列举出符合条件的集合,即可得出答案.【详解】满足的集合有:、、.因此,满足的集合的个数为.故选:B.【点睛】本题考查符合条件的集合个数的计算,只需列举出符合条件的集合即可,考查分析问题和解决问题的能力,属于基础题.7、A【解析】根据题意,以及指数和对数的函数的单调性,来确定a,b,c的大小关系.【详解】解:是增函数,是增函数.,又,【点睛】本题考查三个数的大小的求法,考查指数函数和对数函数性质等基础知识,考查运算求解能力,是基础题.根据题意,构造合适的对数函数和指数函数,利用指数对数函数的单调性判定的范围是关键.8、B【解析】化简集合B,再求集合A,B的交集即可.【详解】∵集合,集合,∴.故选:B.9、A【解析】根据指数函数和对数函数的图像比较大小即可.【详解】令,则,,,由图可知.10、D【解析】设BC=DE=m,∵∠A=30°,且B,C,D三点共线,则CD═AB=m,AC=EC=2m,∴∠ACB=∠CED=60°,∠ACE=90°,,故A、B、C成立;而,,即不成立,故选D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】由函数是幂函数,则,解出的值,再验证函数是否为偶函数,得出答案.【详解】由函数是幂函数,则,得或当时,函数不是偶函数,所以舍去.当时,函数是偶函数,满足条件.故答案为:【点睛】本题考查幂函数的概念和幂函数的奇偶性,属于基础题.12、【解析】令,进而作出的图象,然后通过数形结合求得答案.【详解】令,现作出的图象,如图:于是,当时,图象有交点,即函数有零点.故答案为:.13、10【解析】由数量积的定义直接计算.【详解】.故答案为:10.14、16【解析】由题意易知:△和△为全等的等腰直角三角形,斜边长为,,故答案为16点睛:平面向量数量积类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a·b=|a||b|cosθ;二是坐标公式a·b=x1x2+y1y2;三是利用数量积的几何意义.本题就是利用几何意义处理的.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.15、【解析】设与直线平行的直线,将点代入得.即所求方程为三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)每件工艺品的售价为31元时,利润最大,最大利润为2420元【解析】(1)设,任取两级数据代入求得参数值得解析式;(2)由(1)中关系式得出利润与的关系,由二次函数的性质得最大值【小问1详解】设,不妨选择两组数据,代入,可得解得∴一次函数的解析式为【小问2详解】设利润为元,由题意可得,∴当时,,∴每件工艺品的售价为31元时,利润最大,最大利润为2420元17、(1);(2);(3)7.【解析】(1)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2(n≥2),由此得到(an+an-1)•(an-an-1-2)=0.从而能求出{an}的通项公式;(2)由(1)知,由此利用裂项求和法能求出Tn(3)由(2)知从而得到.由此能求出任意n∈N*,Tn都成立的整数m的最大值【详解】(1)∵4Sn=(an+1)2,①∴4Sn-1=(an-1+1)2(n≥2),②①-②得4(Sn-Sn-1)=(an+1)2-(an-1+1)2∴4an=(an+1)2-(an-1+1)2化简得(an+an-1)•(an-an-1-2)=0∵an>0,∴an-an-1=2(n≥2)∴{an}是以1为首项,2为公差等差数列∴an=1+(n-1)•2=2n-1(2)∴(3)由(2)知,∴数列{Tn}是递增数列∴∴∴整数m的最大值是7【点睛】本题考查数列的通项公式的求法,考查裂项相消法求数列的前n项和,解题时要认真审题,仔细解答,注意等价转化思想的合理运用18、(1),定义域为;(2)当取30时,取最大值,最大值是1215.【解析】(1)应用矩形的面积公式写出表示为的函数,并写出定义域.(2)利用基本不等式求的最大值,并确定对应值.【小问1详解】依题意得:温室的另一边长为米,则养殖池的总面积,因为,解得∴定义域为【小问2详解】由(1),,又,所以,当且仅当,即时上式等号成立,所以.当时,.当x为30时,y取最大值为1215.19、(1)(2)的值是,最小值是,无最大值【解析】(1)根据二次函数的对称轴公式,即可得到结果;(2)由,可求出的值,再根据二次函数的开口和对称轴,即可求出最值.【小问1详解】解:因为二次函数,所以对称轴【小问2详解】解:因为,所以.所以.所以.因为,所以开口向上,又对称轴为,所以最小值为,无最大值.20、(1)增区间是,减区间是;(2)【解析】(1)根据函数的图象即可写出;(2)根据函数零点的定义结合分类讨论思想即可求出小问1详解】的增区间是,减区间是【小问2详解】由得;由得或,当时,得或,所以1是的零点,①当时,则都不是的零点,故只有一个零点;②当时,即时,为使有两个零点,则,解得,此时的两个零点为.当时,得,所以1不是的零点,为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 技术进步与企业运营模式的协同创新
- 小学数学教学与游戏元素的巧妙结合
- 2024手机配件采购与分销协议范本版B版
- 2024版商用户外活动场地租赁协议细则版B版
- 嵌入式系统在物联网平台的角色与挑战
- 2024销售经理薪酬体系与绩效奖金合同范本3篇
- 2025年度生态旅游区模板工程劳务分包合同2篇
- 二零二五年度砖渣买卖合同with附加服务3篇
- 2025化工品采购合同
- 家庭教育与学前儿童的道德教育及自信心塑造
- 2022年海南公务员考试申论试题(B卷)
- 糕点烘焙承揽合同三篇
- 教师资格考试高中历史面试试题及解答参考
- 2024北京初三一模语文汇编:议论文阅读
- 2023部编新人教版五年级(上册)道德与法治全册教案
- 2024年高等教育法学类自考-00226知识产权法考试近5年真题附答案
- 恒顺醋业财务报表分析报告
- 四川省巴中市2023-2024学年七年级上学期期末数学试题(含答案)
- DB31-T 1502-2024 工贸行业有限空间作业安全管理规范
- 医院项目竣工验收和工程收尾阶段的管理措施专项方案
- 2024年秋季新统编版七年级上册道德与法治全册教案
评论
0/150
提交评论