河南省名校大联考2023年高一数学第一学期期末质量跟踪监视试题含解析_第1页
河南省名校大联考2023年高一数学第一学期期末质量跟踪监视试题含解析_第2页
河南省名校大联考2023年高一数学第一学期期末质量跟踪监视试题含解析_第3页
河南省名校大联考2023年高一数学第一学期期末质量跟踪监视试题含解析_第4页
河南省名校大联考2023年高一数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省名校大联考2023年高一数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.若函数的三个零点分别是,且,则()A. B.C. D.2.已知实数,满足,则函数零点所在区间是()A. B.C. D.3.已知函数满足对任意实数,都有成立,则的取值范围是()A B.C. D.4.设函数若是奇函数,则()A. B.C. D.15.如图所示,是顶角为的等腰三角形,且,则A. B.C. D.6.已知函数的图象的对称轴为直线,则()A. B.C. D.7.若直线与直线互相垂直,则等于(

)A.1 B.-1C.±1 D.-28.过点与且圆心在直线上的圆的方程为A. B.C. D.9.设函数满足,当时,,则()A.0 B.C. D.110.已知,则()A. B.C. D.的取值范围是11.已知命题,,则命题否定为()A., B.,C., D.,12.已知是角的终边上的点,则()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知函数,若关于方程恰好有6个不相等的实数解,则实数的取值范围为__________.14.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”.计费方式如下表:每户每月用水量水价不超过12m的部分3元/m超过12m但不超过18m的部分6元/m超过18m的部分9元/m若某户居民本月交纳水费为66元,则此户居民本月用水量为____________.15.在区间上随机地取一个实数,若实数满足的概率为,则________.16.已知,且,则实数的取值范围为__________三、解答题(本大题共6小题,共70分)17.化简求值:(1)(2).18.已知函数.(1)判断奇偶性;(2)当时,判断的单调性并证明;(3)在(2)的条件下,若实数满足,求的取值范围.19.已知函数(1)记,已知函数为奇函数,求实数b的值;(2)求证:函数是上的减函数20.已知函数(1)根据函数单调性的定义,证明在区间上单调递减,在区间上单调递增;(2)令,若对,,都有成立,求实数取值范围21.设全集,集合,.(1)当时,求;(2)在①,②,③这三个条件中任选一个,求实数的取值范围.22.已知角的顶点与原点重合,始边与轴的非负半轴重合,它的终边过点(1)求的值;(2)已知,求

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】利用函数的零点列出方程,再结合,得出关于的不等式,解之可得选项【详解】因为函数的三个零点分别是,且,所以,,解得,所以函数,所以,又,所以,故选:D【点睛】关键点睛:本题考查函数的零点与方程的根的关系,关键在于准确地运用零点存在定理2、B【解析】首先根据已知条件求出,的值并判断它们的范围,进而得出的单调性,然后利用零点存在的基本定理即可求解.【详解】∵,,∴,,∴,且为增函数,故最多只能有一个零点,∵,,∴,∴在内存在唯一的零点.故选:B.3、C【解析】易知函数在R上递增,由求解.【详解】因为函数满足对任意实数,都有成立,所以函数在R上递增,所以,解得,故选:C4、A【解析】先求出的值,再根据奇函数的性质,可得到的值,最后代入,可得到答案.【详解】∵奇函数故选:A【点睛】本题主要考查利用函数的奇偶性求值的问题,属于基础题.5、C【解析】【详解】∵是顶角为的等腰三角形,且∴∴故选C6、A【解析】根据二次函数的图像的开口向上,对称轴为,可得,且函数在上递增,再根据函数的对称性以及单调性即可求解.【详解】二次函数的图像的开口向上,对称轴为,且函数在上递增,根据二次函数的对称性可知,又,所以,故选:A【点睛】本题考查了二次函数的单调性以及对称性比较函数值的大小,属于基础题.7、C【解析】分类讨论:两条直线的斜率存在与不存在两种情况,再利用相互垂直的直线斜率之间的关系即可【详解】解:①当时,利用直线方程分别化为:,,此时两条直线相互垂直②如果,两条直线的方程分别为与,不垂直,故;③,当时,此两条直线的斜率分别为,两条直线相互垂直,,化为,综上可知:故选【点睛】本题考查了相互垂直的直线斜率之间的关系、分类讨论思想方法,属于基础题8、B【解析】先求得线段AB的中垂线的方程,再根据圆心又在直线上求得圆心,圆心到点A的距离为半径,可得圆的方程.【详解】因为过点与,所以线段AB的中点坐标为,,所以线段AB的中垂线的斜率为,所以线段AB的中垂线的方程为,又因为圆心在直线上,所以,解得,所以圆心为,所以圆的方程为.故选:B【点睛】本题主要考查圆的方程的求法,还考查了运算求解的能力,属于中档题.9、A【解析】根据给定条件依次计算并借助特殊角的三角函数值求解作答.【详解】因函数满足,且当时,,则,所以.故选:A10、B【解析】取判断A;由不等式的性质判断BC;由基本不等式判断D.【详解】当时,不成立,A错误.因为,所以,,B正确,C错误.当,时,,当且仅当时,等号成立,而,D错误故选:B11、D【解析】根据全称命题的否定是特称命题形式,直接选出答案.【详解】命题,,是全称命题,故其否定命题为:,,故选:D.12、A【解析】根据三角函数的定义求解即可.【详解】因为为角终边上的一点,所以,,,所以故选:A二、填空题(本大题共4小题,共20分)13、【解析】作出函数的简图,换元,结合函数图象可知原方程有6根可化为在区间上有两个不等的实根,列出不等式组求解即可.【详解】当,结合“双勾”函数性质可画出函数的简图,如下图,令,则由已知条件知,方程在区间上有两个不等的实根,则,即实数的取值范围为.故答案为:【点睛】本题主要考查了分段函数的图象,二次方程根的分布,换元法,数形结合,属于难题.14、【解析】根据阶梯水价,结合题意进行求解即可.【详解】解:当用水量为时,水费为,而本月交纳的水费为66元,显然用水量超过,当用水量为时,水费为,而本月交纳的水费为66元,所以本月用水量不超过,即有,因此本月用水量为,故答案为:15、1【解析】利用几何概型中的长度比即可求解.【详解】实数满足,解得,,解得,故答案为:1【点睛】本题考查了几何概率的应用,属于基础题.16、【解析】,该函数的定义域为,又,故为上的奇函数,所以等价于,又为上的单调减函数,,也即是,解得,填点睛:解函数不等式时,要注意挖掘函数的奇偶性和单调性三、解答题(本大题共6小题,共70分)17、(1)(2)【解析】(1)根据对数运算公式计算即可;(2)根据指数运算公式和根式的性质运算化简.【小问1详解】原式【小问2详解】原式.18、(1)奇函数(2)增函数,证明见解析(3)【解析】(1)求出函数的定义域,再判断的关系,即可得出结论;(2)任取且,利用作差法比较的大小即可得出结论;(3)根据函数的单调性列出不等式,即可得解,注意函数的定义域.【小问1详解】解:函数的定义域为,因为,所以函数是奇函数;小问2详解】解:函数是上单调增函数,证:任取且,则,因为,所以,,,所以,即,所以函数是上的单调增函数;【小问3详解】解:由(2)知函数是上的单调增函数,所以,解得,所以的取值范围为.19、(1)(2)证明见解析【解析】(1)由奇函数性质列方程去求实数b的值即可解决;(2)以减函数定义去证明函数是上的减函数即可.【小问1详解】函数的定义域为,,∵为奇函数,,所以恒成立,即恒成立,解得,经检验时,为奇函数.故实数b的值为【小问2详解】设任意实数,则,因为,所以,,即又,则所以,即,所以函数是上的减函数20、(1)证明见解析(2)【解析】(1)由单调性定义证明;(2)换元,设,,由(1)求得的范围,然后由二次函数性质求得最大值和最小值,由最大值减去最小值不大于可得的范围【小问1详解】证明:设,,且,则,当时,∴,,∴,∴,即,∴函数在上单调递减当时,∴,,∴,∴,即,∴函数在上单调递增综上,函数在上单调递减,在上单调递增【小问2详解】解:由题意知,令,,由(1)可知函数在上单调递减,在上单调递增,∴,∵函数的对称轴方程为,∴函数在上单调递减,当时,取得最大值,,当时,取得最小值,,所以,,又∵对,,都有恒成立,∴,即,解得,又∵,∴k的取值范围是21、(1);(2)①;②;③.【解析】(1)将代入集合,求出集合和,然后利用交集的定义可求出集合;(2)选择①,根据得出关于实数的不等式组,解出即可;选择②,由,可得出,可得出关于实数的不等式组,解出即可;选择③,求出集合,根据可得出关于实数的不等式,解出即可.【详解】(1)当时,,,,因此,;(2),.选择①,,则或,解得或,此时,实数的取值范围是;选择②,,,则,解得,此时,实数的取值范围是;选择③,,或,解得或,此时,实数的取值范围是.综上所述,选择①,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论