河北省唐山市开滦二中2023年高一上数学期末达标检测模拟试题含解析_第1页
河北省唐山市开滦二中2023年高一上数学期末达标检测模拟试题含解析_第2页
河北省唐山市开滦二中2023年高一上数学期末达标检测模拟试题含解析_第3页
河北省唐山市开滦二中2023年高一上数学期末达标检测模拟试题含解析_第4页
河北省唐山市开滦二中2023年高一上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省唐山市开滦二中2023年高一上数学期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.命题的否定是()A. B.C. D.2.某几何体的三视图如图所示,则该几何体的表面积等于A. B.C. D.153.下列几何体中是棱柱的有()A.1个 B.2个C.3个 D.4个4.设则的值为A. B.C.2 D.5.如图,一个直三棱柱形容器中盛有水,且侧棱.若侧面水平放置时,液面恰好过的中点,当底面ABC水平放置时,液面高为()A.6 B.7C.2 D.46.已知函数为奇函数,且当x>0时,=x2+,则等于()A.-2 B.0C.1 D.27.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:)A类轮胎:94,96,99,99,105,107B类轮胎:95,95,98,99,104,109根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定8.与角的终边相同的最小正角是()A. B.C. D.9.函数f(x)=sin(x+)+cos(x-)的最大值是()A. B.C.1 D.10.若集合,则()A. B.C. D.11.已知函数为上偶函数,且在上的单调递增,若,则满足的的取值范围是()A. B.C. D.12.下列各题中,p是q的充要条件的是()A.p:,q:B.p:,q:C.p:四边形是正方形,q:四边形的对角线互相垂直且平分D.p:两个三角形相似,q:两个三角形三边成比例二、填空题(本大题共4小题,共20分)13.计算______14.已知,函数在上单调递增,则的取值范围是__15.已知,若对一切实数,均有,则___.16.函数的定义域为D,给出下列两个条件:①对于任意,当时,总有;②在定义域内不是单调函数.请写出一个同时满足条件①②的函数,则______________.三、解答题(本大题共6小题,共70分)17.已知,求,的值.18.计算下列各式的值:(1)lg2(2)sin19.已知,,,请在①②,③中任选一个条件,补充在横线上(1)求的值;(2)求的值20.已知函数(1)求函数的单调递增区间;(2)若,求函数的取值范围21.已知函数(1)求函数的对称中心和单调递减区间;(2)若将函数的图象上每一点向右平移个单位得到函数的图象,求函数在区间上的值域22.已知函数(为常数)是定义在上的奇函数.(1)求函数的解析式;(2)判断函数的单调性,并用定义证明;(3)若函数满足,求实数的取值范围.

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】根据存在量词命题的否定是全称量词命题,选出正确选项.【详解】因为命题是存在量词命题,所以其否定是全称量词命题,即,.故选:C.2、B【解析】根据三视图可知,该几何体为一个直四棱柱,底面是直角梯形,两底边长分别为,高为,直四棱柱的高为,所以底面周长为,故该几何体的表面积为,故选B考点:1.三视图;2.几何体的表面积3、C【解析】根据棱柱的定义进行判断即可【详解】棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱,观察图形满足棱柱概念的几何体有:①③⑤,共三个故选:C【点睛】本题主要考查棱柱的概念,属于简单题.4、D【解析】由题意可先求f(2),然后代入f(f(2))=f(﹣1)可得结果.【详解】解:∵∴f(2)∴f(f(2))=f(﹣1)=故选D【点睛】本题主要考查了分段函数的函数值的求解,解题的关键是需要判断不同的x所对应的函数解析式,属于基础试题5、A【解析】根据题意,当侧面AA1B1B水平放置时,水的形状为四棱柱形,由已知条件求出水的体积;当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,故水的体积可以用三角形的面积直接表示出,计算即可得答案【详解】根据题意,当侧面AA1B1B水平放置时,水的形状为四棱柱形,底面是梯形,设△ABC的面积为S,则S梯形=S,水的体积V水=S×AA1=6S,当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,则有V水=Sh=6S,故h=6故选A【点睛】本题考点是棱柱的体积计算,考查用体积公式来求高,考查转化思想以及计算能力,属于基础题6、A【解析】首先根据解析式求值,结合奇函数有即可求得【详解】∵x>0时,=x2+∴=1+1=2又为奇函数∴故选:A【点睛】本题考查了函数的奇偶性,结合解析式及函数的奇偶性,求目标函数值7、D【解析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确故选:D8、D【解析】写出与角终边相同的角的集合,即可得出结论.【详解】与角终边相同角的集合为,当时,取得最小正角为.故选:D.9、A【解析】先利用三角恒等变化公式将函数化成形式,然后直接得出最值.【详解】整理得,利用辅助角公式得,所以函数的最大值为,故选A.【点睛】三角函数求最值或者求值域一定要先将函数化成的形函数.10、B【解析】集合、与集合之间的关系用或,元素0与集合之间的关系用或,ACD选项都使用错误。【详解】,只有B选项的表示方法是正确的,故选:B。【点睛】本题考查了元素与集合、集合与集合之间的关系的表示方法,注意集合与集合之间的关系是子集(包含于),元素与集合之间的关系是属于或不属于。本题属于基础题。11、B【解析】根据偶函数的性质和单调性解函数不等式【详解】是偶函数,.所以不等式化为,又在上递增,所以,或,即或故选:B12、D【解析】根据充分条件、必要条件的判定方法,逐项判定,即可求解.【详解】对于A中,当时,满足,所以充分性不成立,反之:当时,可得,所以必要性成立,所以是的必要不充分条件,不符合题意;对于B中,当时,可得,即充分性成立;反之:当时,可得,即必要性不成立,所以是的充分不必要条件,不符合题意;对于C中,若四边形是正方形,可得四边形的对角线互相垂直且平分,即充分性成立;反之:若四边形的对角线互相垂直且平分,但四边形不一定是正方形,即必要性不成立,所以是充分不必要条件,不符合题意;对于D中,若两个三角形相似,可得两个三角形三边成比例,即充分性成立;反之:若两个三角形三边成比例,可得两个三角形相似,即必要性成立,所以是的充分必要条件,符合题意.故选:D.二、填空题(本大题共4小题,共20分)13、11【解析】进行分数指数幂和对数式的运算即可【详解】原式故答案为11【点睛】本题考查对数式和分数指数幂的运算,熟记运算性质,准确计算是关键,是基础题.14、【解析】本题已知函数的单调区间,求参数的取值范围,难度中等.由,得,又函数在上单调递增,所以,即,注意到,即,所以取,得考点:函数的图象与性质【方法点晴】已知函数为单调递增函数,可得变量的取值范围,其必包含区间,从而可得参数的取值范围,本题还需挖掘参数的隐含范围,即函数在上单调递增,可知,因此,综合题15、【解析】列方程组解得参数a、b,得到解析式后,即可求得的值.【详解】由对一切实数,均有可知,即解之得则,满足故故答案:16、【解析】根据题意写出一个同时满足①②的函数即可.【详解】解:易知:,上单调递减,上单调递减,故对于任意,当时,总有;且在其定义域上不单调.故答案为:.三、解答题(本大题共6小题,共70分)17、见解析【解析】分角为第三和第四象限角两种情况讨论,结合同角三角函数的基本关系可得解.【详解】因为,,所以是第三或第四象限角.由得.如果是第三象限角,那么,于是,从而;如果是第四象限角,那么,.综上所述,当是第三象限角时,,;当是第四象限角时,,.【点睛】本题考查利用同角三角函数的基本关系求值,考查计算能力,属于基础题.18、(1)1(2)-1【解析】(1)利用对数的运算性质直接计算可得;(2)先进行切化弦,再通分后利用和差角公式和诱导公式即可求得.【小问1详解】原式=lg2(lg2+lg5)+lg5=lg2+lg5=1【小问2详解】原式=sin40°(sin10°cos=sin40°(sin10=2=-2=-=-=-119、(1);(2).【解析】(1)根据所选的条件求得,,再由差角正弦公式求的值;(2)由题设可得,进而可得,结合及差角余弦公式,即可求值.【小问1详解】由,则:若选①,由,,得,,若选②,由得:,所以,若选③,由得,,,,所以.【小问2详解】∵,∴,又,∴∴.20、(1),;(2);【解析】(1)利用降幂公式与辅助角公式将化简,在利用正弦函数的单调性质即可求得函数的单调递增区间;(2)由的取值范围,求出的范围,利用正弦函数的单调性即可求得函数的取值范围【详解】解:(1)因为由,,解得,,所以的单调递增区间为,;(2),,当即时,当即时,,即21、(1)对称中心为,单调递减区间为(2)【解析】(1)由倍角公式以及辅助角公式化简函数,然后由正弦函数的对称中心以及单调递减区间求出函数的对称中心和单调递减区间;(2)由函数的图像向右平移个单位得到函数的解析式,再由,得到,求出函数在区间的值域,即可得到函数在区间上的值域【详解】解(1)令,得:,∴的对称中心为,由,得:,∴的单调区间为(2)由题意:∵∴∴∴的值域为【点睛】本题主要考查了正弦型函数对称中心、单调性以及在给定区间的值域,属于中档题.22、(1)(2)在上单调递减,证明见解析(3)【解析】(1)依题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论