河北省唐山二中2023年高一数学第一学期期末检测模拟试题含解析_第1页
河北省唐山二中2023年高一数学第一学期期末检测模拟试题含解析_第2页
河北省唐山二中2023年高一数学第一学期期末检测模拟试题含解析_第3页
河北省唐山二中2023年高一数学第一学期期末检测模拟试题含解析_第4页
河北省唐山二中2023年高一数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省唐山二中2023年高一数学第一学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则()A.3 B.2C.1 D.-12.已知函数,则函数()A.有最小值 B.有最大值C有最大值 D.没有最值3.已知幂函数的图象过(4,2)点,则A. B.C. D.4.已知函数f(x)=设f(0)=a,则f(a)=()A.-2 B.-1C. D.05.如图,一个空间几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A. B.C. D.6.为了节约水资源,某地区对居民用水实行“阶梯水价”制度:将居民家庭全年用水量(取整数)划分为三档,水价分档递增,其标准如下:阶梯居民家庭全年用水量(立方米)水价(元/立方米)其中水费(元/立方米)水资源费(元/立方米)污水处理费(元/立方米)第一阶梯0-180(含)52.071.571.36第二阶梯181-260(含)74.07第三阶梯260以上96.07如该地区某户家庭全年用水量为300立方米,则其应缴纳的全年综合水费(包括水费、水资源费及污水处理费)合计为元.若该地区某户家庭缴纳的全年综合水费合计为1180元,则此户家庭全年用水量为()A.170立方米 B.200立方米C.220立方米 D.236立方米7.已知奇函数在上单调递减,且,则不等式的解集为()A. B.C. D.8.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则9.已知全集,集合,集合,则集合为A. B.C. D.10.如果函数在区间上单调递减,则的取值范围是()A. B.C. D.以上选项均不对二、填空题:本大题共6小题,每小题5分,共30分。11.某扇形的圆心角为2弧度,周长为4cm,则该扇形面积为_____cm212.在正方体ABCD-A1B1C1D1中,E、F是分别是棱A1B1、A1D1的中点,则A1B与EF所成角的大小为______13.已知且,函数的图象恒经过定点,正数、满足,则的最小值为____________.14.设集合,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第位的子集是_________.15.若,则______16.若函数与函数的最小正周期相同,则实数______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设,已知集合,(1)当时,求;(2)若,且,求实数的取值范围18.已知函数(1)判断在区间上的单调性,并用函数单调性的定义给出证明;(2)设(k为常数)有两个零点,且,当时,求k的取值范围19.已知二次函数满足对任意,都有;;的图象与轴的两个交点之间的距离为.(1)求的解析式;(2)记,(i)若为单调函数,求的取值范围;(ii)记的最小值为,若方程有两个不等的根,求的取值范围.20.已知函数.(1)若是定义在R上的偶函数,求a的值及的值域;(2)若在区间上是减函数,求a的取值范围.21.已知函数是定义域为R的奇函数.(1)求t的值,并写出的解析式;(2)判断在R上的单调性,并用定义证明;(3)若函数在上的最小值为,求k的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】直接利用诱导公式化简,再根据同角三角函数的基本关系代入计算可得;【详解】解:因为,所以;故选:B2、B【解析】换元法后用基本不等式进行求解.【详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B3、D【解析】设函数式为,代入点(4,2)得考点:幂函数4、A【解析】根据条件先求出的值,然后代入函数求【详解】,即,故选:A5、A【解析】几何体是一个圆柱,圆柱的底面是一个直径为2的圆,圆柱的高是2,侧面展开图是一个矩形,进而求解.【详解】由三视图可知该几何体是底面半径为1高为2的圆柱,∴该几何体的侧面积为,故选:A【点睛】本题考查三视图和圆柱的侧面积,关键在于由三视图还原几何体.6、C【解析】根据用户缴纳的金额判定全年用水量少于260,利用第二档的收费方式计算即可.【详解】若该用户全年用水量为260,则应缴纳元,所以该户家庭的全年用水量少于260,设该户家庭全年用水量为x,则应缴纳元,解得.故选:C7、A【解析】由题意可得在单调递减,且,从而可得当或时,,当或时,,然后分和求出不等式的解集【详解】因为奇函数在上单调递减,且,所以在单调递减,且,所以当或时,,当或时,,当时,不等式等价于,所以或,解得,当时,不等式等价于,所以或,解得或,综上,不等式的解集为,故选:A8、D【解析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当

时,存在,,故B项错误;C项,可能相交或垂直,当

时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.9、C【解析】,选C10、A【解析】先求出二次函数的对称轴,由区间,在对称轴的左侧,列出不等式解出的取值范围【详解】解:函数的对称轴方程为:,函数在区间,上递减,区间,在对称轴的左侧,,故选:A【点睛】本题考查二次函数图象特征和单调性,以及不等式的解法,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】设该扇形的半径为,根据题意,因为扇形的圆心角为弧度,周长为,则有,,故答案为.12、【解析】解:如图,将EF平移到A1B1,再平移到AC,则∠B1AC为异面直线AB1与EF所成的角三角形B1AC为等边三角形,故异面直线AB1与EF所成的角60°,13、9【解析】由指数函数的性质可得函数的图象恒经过定点,进而可得,然后利用基本不等式中“1”的妙用即可求解.【详解】解:因为函数的图象恒经过定点,所以,又、为正数,所以,当且仅当,即时等号成立,所以的最小值为9.故答案为:9.14、【解析】根据题意依次按“势”从小到大顺序排列,得到答案.【详解】根据题意,将全部的子集按“势”从小到大顺序排列为:,,,,,,,.故排在第6的子集为.故答案为:15、【解析】由二倍角公式,商数关系得,再由诱导公式、商数关系变形求值式,代入已知可得【详解】,所以,故答案为:16、【解析】求出两个函数的周期,利用周期相等,推出a的值【详解】:函数的周期是;函数的最小正周期是:;因为周期相同,所以,解得故答案为【点睛】本题是基础题,考查三角函数的周期的求法,考查计算能力三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】(1)根据并集和补集的概念即可求出结果;(2)由题意可得,解不等式组即可求出结果.【小问1详解】当时,,且,则,所以或;【小问2详解】因为,且,所以需满足,解得,所以实数的取值范围为.18、(1)在区间上的单调递减,证明详见解析;(2)【解析】(1)在区间上的单调递减,任取,且,再判断的符号即可;(2)令,得到,根据,转化为有两个零点,且,求解.【小问1详解】解:在区间上的单调递减,证明如下:任取,且,则,因为,所以,因为,所以,所以,即,所以在区间上的单调递减;【小问2详解】令,则,因为,所以,则,即,因为(k为常数)有两个零点,且,,所以(k为常数)有两个零点,且,,所以,解得.19、(1);(2)(i);(ii)或.【解析】(1)根据二次函数的对称轴、求参数a、b、c,写出的解析式;(2)(i)利用二次函数的性质,结合的区间单调性求的取值范围;(ii)讨论、、,结合二次函数的性质求最小值的表达式,再令并应用数形结合的方法研究的零点情况求的取值范围.【详解】(1)设由题意知:对称轴,,又,则,,设的两根为,,则,,由已知:,解得.(2)(i),其对称轴为为单调函数,或,解得或.的取值范围是.(ii),,对称轴①当,即时,区间单调递增,.②当,即时,在区间单调递减,③当,即时,,函数零点即为方程的根令,即,作出的简图如图所示①当时,,或,解得或,有个零点;②当时,有唯一解,解得,有个零点;③当时,有两个不同解,,解得或,有4个零点;④当时,,,解得,有个零点;⑤当时,无解,无零点综上:当或时,有个零点.【点睛】关键点点睛:第二问,(i)分类讨论并结合二次函数区间单调性求参数范围,(ii)分类讨论求最小值的表达式,再应用换元法及数形结合求参数范围.20、(1),;(2)【解析】(1)根据偶函数的定义,求出,得,验证定义域是否关于原点对称,求出真数的范围,再由对数函数的单调性,即可求出值域;(2),由条件可得,在上是减函数,且在上恒成立,根据二次函数的单调性,得出参数的不等式,即可求解.【详解】解:(1)因为是定义在R上的偶函数,所以,所以,故,此时,,定义域为R,符合题意.令,则,所以,故的值域为.(2)设.因为在上是减函数,所以在上是减函数,且在上恒成立,故解得,即.【点睛】本题考查函数的性质,涉及到函数的奇偶性、单调性、值域,研究函数的性质要注意定义域,属于中档题.21、(1)或,;(2)R上单调递增,证明见解析;(3)【解析】(1)是定义域为R的奇函数,利用奇函数的必要条件,求出的值,进而求出,验证是否为奇函数;(2)可判断在上为增函数,用函数的单调性定义加以证明,取两个不等的自变量,对应函数值做差,因式分解,判断函数值差的符号,即可证明结论;(3)由,换元令,,由(2)得,,根据条件转化为在最小值为-2,对二次函数配方,求出对称轴,分类讨论求出最小值,即可求解【详解】解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论