版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福州第一中学2023-2024学年高一上数学期末请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,共60分)1.集合A=,B=,则集合AB=()A. B.C. D.2.已知函数的上单调递减,则的取值范围是()A. B.C. D.3.函数()的零点所在的一个区间是()A. B.C. D.4.甲、乙两位同学解答一道题:“已知,,求的值.”甲同学解答过程如下:解:由,得.因为,所以.所以.乙同学解答过程如下:解:因为,所以.则在上述两种解答过程中()A.甲同学解答正确,乙同学解答不正确 B.乙同学解答正确,甲同学解答不正确C.甲、乙两同学解答都正确 D.甲、乙两同学解答都不正确5.全称量词命题“,”的否定是()A., B.,C., D.以上都不正确6.已知正方体ABCD-ABCD中,E、F分别为BB、CC的中点,那么异面直线AE与DF所成角的余弦值为A. B.C. D.7.下列函数中,既是奇函数又在定义域上是增函数的为A. B.C. D.8.函数y=sin2x,xR的最小正周期是()A.3π B.πC.2 D.19.若函数的值域为,则实数的取值范围是()A. B.C. D.10.设全集,集合,,则A.{4} B.{0,1,9,16}C.{0,9,16} D.{1,9,16}11.满足的集合的个数为()A. B.C. D.12.已知全集,集合,,那么阴影部分表示的集合为A. B.C. D.二、填空题(本大题共4小题,共20分)13.函数的定义域为______14.已知集合,若,求实数的值.15.已知角的终边经过点,且,则t的值为______16.若函数(,且)的图象经过点,则___________.三、解答题(本大题共6小题,共70分)17.已知集合,或(1)当时,求;(2)若,且“”是“”的充分不必要条件,求实数a的取值范围18.已知集合,或,.(1)求,;(2)求.19.设函数,函数,且,的图象过点及(1)求和的解析式;(2)求函数的定义域和值域20.设集合,,求,21.已知函数.(1)求函数的周期;(2)求函数的单调递增区间.22.已知.(1)若关于x的不等式的解集为区间,求a的值;(2)设,解关于x的不等式.
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】直接根据并集的运算可得结果.【详解】由并集的运算可得.故选:B.2、C【解析】利用二次函数的图象与性质得,二次函数f(x)在其对称轴左侧的图象下降,由此得到关于a的不等关系,从而得到实数a的取值范围【详解】当时,,显然适合题意,当时,,解得:,综上:的取值范围是故选:C【点睛】本小题主要考查函数单调性的应用、二次函数的性质、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题3、C【解析】将各区间的端点值代入计算并结合零点存在性定理判断即可.【详解】由,,,所以,根据零点存在性定理可知函数在该区间存在零点.故选:C4、D【解析】分别利用甲乙两位同学的解题方法解题,从而可得出答案.【详解】解:对于甲同学,由,得,因为因为,所以,所以,故甲同学解答过程错误;对于乙同学,因为,所以,故乙同学解答过程错误.故选:D.5、C【解析】根据全称量词命题的否定是存在量词命题,即可得出结论.【详解】全称量词命题“,”的否定为“,”.故选:C.6、C【解析】连接DF,因为DF与AE平行,所以∠DFD即为异面直线AE与DF所成角的平面角,设正方体的棱长为2,则FD=FD=,由余弦定理得cos∠DFD==.7、D【解析】选项,在定义域上是增函数,但是是非奇非偶函数,故错;选项,是偶函数,且在上是增函数,在上是减函数,故错;选项,是奇函数且在和上单调递减,故错;选项,是奇函数,且在上是增函数,故正确综上所述,故选8、B【解析】根据解析式可直接求出最小正周期.【详解】函数的最小正周期为.故选:B.9、C【解析】因为函数的值域为,所以可以取到所有非负数,即的最小值非正.【详解】因为,且的值域为,所以,解得.故选:C.10、B【解析】根据集合的补集和交集的概念得到结果即可.【详解】全集,集合,,;,故答案为B.【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算11、B【解析】列举出符合条件的集合,即可得出答案.【详解】满足的集合有:、、.因此,满足的集合的个数为.故选:B.【点睛】本题考查符合条件的集合个数的计算,只需列举出符合条件的集合即可,考查分析问题和解决问题的能力,属于基础题.12、D【解析】由韦恩图可知阴影部分表示的集合为,求出,计算得到答案【详解】阴影部分表示的集合为,故选【点睛】本题主要考查的是韦恩图表达集合的关系和运算,属于基础题二、填空题(本大题共4小题,共20分)13、【解析】由对数的真数大于零、二次根式的被开方数非负,分式的分母不为零,列不等式组可求得答案【详解】由题意得,解得,所以函数的定义域为,故答案为:14、【解析】根据题意,可得或,然后根据结果进行验证即可.【详解】由题可知:集合,所以或,则或当时,,不符合集合元素的互异性,当时,,符合题意所以【点睛】本题考查元素与集合的关系求参数,考查计算能力,属基础题.15、##0.5625【解析】根据诱导公式得sinα=-,再由任意角三角函数定义列方程求解即可.【详解】因为,所以sinα=-.又角α的终边过点P(3,-4t),故sinα==-,故,且解得t=(或舍)故答案为:.16、【解析】把点的坐标代入函数的解析式,即可求出的值.【详解】因为函数的图象经过点,所以,解得.故答案为:.三、解答题(本大题共6小题,共70分)17、(1)(2)【解析】(1)首先得到集合,再根据交集的定义计算可得;(2)首先求出集合的补集,依题意可得是的真子集,即可得到不等式组,解得即可;【小问1详解】解:当时,,或,∴【小问2详解】解:∵或,∴,∵“”是“”的充分不必要条件,∴是的真子集,∵,∴,∴,∴,故实数的取值范围为18、(1)或,(2)【解析】(1)根据并集和交集定义即可求出;(2)根据补集交集定义可求.【小问1详解】因为,或,所以或,;【小问2详解】或,,所以.19、(1),;(2),.【解析】(1)根据得出关于方程,求解方程即可;(2)根据的图象过点及,列方程组求得的解析式,可得,解不等式可求得定义域,根据二次函数的性质,配方可得,利用对数函数的单调性求解即可.【详解】(1)因为,;因为的图象过点及,所以,;(2)由,得函数的定义域为,即的值域为.【点睛】本题主要考查函数的解析式、定义域与值域,属于中档题.求函数值域的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法:首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求凼数的值域,⑤图象法:画出函数图象,根据图象的最高和最低点求最值.20、答案见解析【解析】首先化简集合B,然后根据集合、分类讨论a的取值,再根据交集和并集的定义求得答案【详解】解:因所以又因为,当时,所以,当时,所以,当时,所以,当且且时,所以,21、(1)(2)【解析】(1)先把函数化简为,利用正弦型函数的周期公式,即得解(2)由解出的范围就是所要求的递增区间.【小问1详解】故函数的周期【小问2详解】由,得,所以单调递增区间为22、(1);(2)答案见解析.【解析】(1)先将分式不等式转化成一元二次不等式,再根据解集与根的关系,即得结果;(2)先将分式不等式转化成一元二次不等式,再
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJF(陕) 067-2021 硬质金属容器校准规范
- JJF(陕) 019-2019 混凝土氯离子电通量测定仪校准规范
- 《让安全伴你我同行》课件
- 增强市场竞争力的行动计划
- 研究员工激励机制效果计划
- 专业发展与教研活动的关系计划
- 精细化管理在仓库中的体现计划
- 消防安全责任落实机制培训
- 小班情景剧表演项目的设计计划
- 家用美容、保健电器具相关项目投资计划书范本
- 女生穿搭技巧智慧树知到期末考试答案2024年
- 宏观经济学(山东联盟-山东财经大学)智慧树知到期末考试答案2024年
- GB/T 19964-2024光伏发电站接入电力系统技术规定
- 2022-2023学年北京市朝阳区初一(上)期末考试英语试卷(含详细答案解析)
- 《初中班会课件:如何正确对待网络暴力》
- 保险金信托培训课件
- 肿瘤科化疗患者护理PDCA循环案例
- 国家学生体质健康标准评分表
- 烧伤科普讲座课件
- 2024年中国铁路南宁局集团有限公司招聘笔试参考题库附带答案详解
- 心外科疾病知识讲座
评论
0/150
提交评论