福建省长汀、连城、武平、永定、漳平、上杭六地一中联考2023-2024学年数学高一上期末检测模拟试题含解析_第1页
福建省长汀、连城、武平、永定、漳平、上杭六地一中联考2023-2024学年数学高一上期末检测模拟试题含解析_第2页
福建省长汀、连城、武平、永定、漳平、上杭六地一中联考2023-2024学年数学高一上期末检测模拟试题含解析_第3页
福建省长汀、连城、武平、永定、漳平、上杭六地一中联考2023-2024学年数学高一上期末检测模拟试题含解析_第4页
福建省长汀、连城、武平、永定、漳平、上杭六地一中联考2023-2024学年数学高一上期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省长汀、连城、武平、永定、漳平、上杭六地一中联考2023-2024学年数学高一上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.设全集U=1,2,3,4,5,6,7,8,9,集合A=2,4,6,8,那么A.9 B.1,3,5,7,9C.1,3,5 D.2,4,62.函数的部分图象大致是()A. B.C. D.3.函数的值域是A. B.C. D.4.若角的终边和单位圆的交点坐标为,则()A. B.C. D.5.=()A. B.C. D.6.已知向量,,那么()A.5 B.C.8 D.7.若,则()A. B.C. D.8.已知函数,则()A.﹣1 B.C. D.39.若两直线与平行,则它们之间的距离为A. B.C. D.10.若“”是“”的充分不必要条件,则()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数满足下列四个条件中的三个:①函数是奇函数;②函数在区间上单调递增;③;④在y轴右侧函数的图象位于直线上方,写出一个符合要求的函数________________________.12.唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮船航行模式之先导,如图,某桨轮船的轮子的半径为,他以的角速度逆时针旋转,轮子外边沿有一点P,点P到船底的距离是H(单位:m),轮子旋转时间为t(单位:s).当时,点P在轮子的最高处.(1)当点P第一次入水时,__________;(2)当时,___________.13.设函数是定义在上的奇函数,且,则___________14.某校高中三个年级共有学生2000人,其中高一年级有学生750人,高二年级有学生650人.为了了解学生参加整本书阅读活动的情况,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么在高三年级的学生中应抽取的人数为___________.15.正方体ABCD-A1B1C1D1中,二面角C1-AB-C平面角等于________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知直线经过直线与直线的交点,且与直线垂直.(1)求直线的方程;(2)若直线与圆相交于两点,且,求的值.17.对于函数,若在其定义域内存在实数,,使得成立,则称是“跃点”函数,并称是函数的1个“跃点”(1)求证:函数在上是“1跃点”函数;(2)若函数在上存在2个“1跃点”,求实数的取值范围;(3)是否同时存在实数和正整数使得函数在上有2022个“跃点”?若存在,请求出和满足的条件;若不存在,请说明理由18.已知集合:①;②;③,集合(m为常数),从①②③这三个条件中任选一个作为集合A,求解下列问题:(1)定义,当时,求;(2)设命题p:,命题q:,若p是q成立的必要不充分条件,求实数m的取值范围19.已知(1)当时,求的值;(2)若的最小值为,求实数的值;(3)是否存在这样的实数,使不等式对所有都成立.若存在,求出的取值范围;若不存在,请说明理由20.某厂生产某种产品的年固定成本为万元,每生产千件,需另投入成本为.当年产量不足千件时,(万元);当年产量不小于千件时,(万元).通过市场分析,若每件售价为元时,该厂年内生产的商品能全部售完.(利润销售收入总成本)(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)年产量为多少万件时,该厂在这一商品的生产中所获利润最大?21.已知函数(1)求函数f(x)的最小正周期和单调递增区间;(2)求函数f(x)在区间上的最大值和最小值

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】由补集的定义分析可得∁U【详解】根据题意,全集U=1,2,3,4,5,6,7,8,9,而A=则∁U故选:B2、A【解析】分析函数的奇偶性及其在上的函数值符号,结合排除法可得出合适的选项.【详解】函数的定义域为,,函数为偶函数,排除BD选项,当时,,则,排除C选项.故选:A.3、A【解析】由,知,解得令,则.,即为和两函数图象有交点,作出函数图象,如图所示:由图可知,当直线和半圆相切时最小,当直线过点A(4,0)时,最大.当直线和半圆相切时,,解得,由图可知.当直线过点A(4,0)时,,解得.所以,即.故选A.4、C【解析】直接利用三角函数的定义可得.【详解】因为角的终边和单位圆的交点坐标为,所以由三角函数定义可得:.故选:C5、B【解析】利用诱导公式和特殊角的三角函数值直接计算作答.【详解】.故选:B6、B【解析】根据平面向量模的坐标运算公式,即可求出结果.【详解】因为向量,,所以.故选:B.7、A【解析】令,则,所以,由诱导公式可得结果.【详解】令,则,且,所以.故选:A.8、C【解析】先计算,再代入计算得到答案.【详解】,则故选:【点睛】本题考查了分段函数的计算,意在考查学生的计算能力.9、D【解析】根据两直线平行求得值,利用平行线间距离公式求解即可【详解】与平行,,即直线为,即故选D【点睛】本题考查求平行线间距离.当直线与直线平行时,;平行线间距离公式为,因此两平行直线需满足,10、B【解析】转化“”是“”的充分不必要条件为,分析即得解【详解】由题意,“”是“”的充分不必要条件故故故选:B二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】满足①②④的一个函数为,根据奇偶性以及单调性,结合反比例函数的性质证明①②④.【详解】满足①②④对于①,函数的定义域为关于原点对称,且,即为奇函数;对于②,任取,且因为,所以,即函数在区间上单调递增;对于④,令,当时,,即在y轴右侧函数的图象位于直线上方故答案为:【点睛】关键点睛:解决本题的关键在于利用定义证明奇偶性以及单调性.12、①.②.##【解析】算出点从最高点到第一次入水的圆心角,即可求出对应时间;由题意求出关于的表达式,代值运算即可求出对应.【详解】如图所示,当第一次入水时到达点,由几何关系知,又圆的半径为3,故,此时轮子旋转的圆心角为:,故;由题可知,即,当时,.故答案为:;13、【解析】先由已知条件求出的函数关系式,也就是当时的函数关系式,再求得,然后求的值即可【详解】解:当时,,∴,∵函数是定义在上的奇函数,∴,∴,即由题意得,∴故答案为:【点睛】此题考查了分段函数求值,考查了奇函数的性质,属于基础题.14、60【解析】求出高三年级的学生人数,再根据分层抽样的方法计算即可.【详解】高三年级有学生2000-750-650=600人,用分层抽样的方法从中抽取容量为200的样本,应抽取高三年级学生的人数为200×600故答案为:6015、45°【解析】解:如图,设正方体ABCD-A1B1C1D1的棱长为1,以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,则A(1,0,0),B(1,1,0),C1(0,1,1),∴=(0,1,0),=(-1,1,1),设面ABC1的法向量为=(x,y,z),∵•=0,•=0,∴y=0,-x+y+z=0,∴=(1,0,1),∵面ABC的法向量=(0,0,1),设二面角C1-AB-C的平面角为θ,∴cosθ=|cos<,>|=,∴θ=45°,答案为45°考点:二面角的平面角点评:本题考查二面角的平面角及求法,是基础题.解题时要认真审题,注意向量法的合理运用三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)或.【解析】(1)由解得P的坐标,再求出直线斜率,即可求直线的方程;(2)若直线与圆:相交由垂径定理列方程求解即可.【详解】(1)由得所以.因为,所以,所以直线的方程为,即.(2)由已知可得:圆心到直线的距离为,因为,所以,所以,所以或.【点睛】直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小17、(1)证明见详解(2)(3)存在,或或【解析】(1)将要证明问题转化为方程在上有解,构造函数转化为函数零点问题,结合零点存在性定理可证;(2)原问题等价于方程在由两个根,然后构造二次函数,转化为零点分布问题可解;(3)将问题转化为方程在上有2022个实数根,再转化为两个函数交点个数问题,然后可解.【小问1详解】因为整理得,令,因为,所以在区间有零点,即存在,使得,即存在,使得,所以,函数在上是“1跃点”函数【小问2详解】函数在上存在2个“1跃点”方程在上有两个实数根,即在上有两个实数根,令,则解得或,所以的取值范围是【小问3详解】由,得,即因为函数在上有2022个“跃点”,所以方程在上有2022个解,即函数与的图象有2022个交点.所以或或即或或18、(1);(2)【解析】(1)求出集合的范围,取交集即可(2)求出集合的范围,根据p是q成立的必要不充分条件,得到,从而求出参数的取值范围【小问1详解】选①:,若,即时,即,解得,若,则,无解,所以的解集为,故,由,可得,即,解得,故,则选②:,解得,故,,,即,解得,故,则选③:,,解得,故,,,即,解得,故,则【小问2详解】由,即,解得,因为p是q成立的必要不充分条件,所以,所以或,解得,故m的取值范围为19、(1)(2)或(3)存在,的取值范围为【解析】(1)先化简,再代入进行求解;(2)换元法,化为二次函数,结合对称轴分类讨论,求出最小值时m的值;(3)换元法,参变分离,转化为在恒成立,根据单调性求出取得最大值,进而求出的取值范围.【小问1详解】,当时,【小问2详解】设,则,,,其对称轴为,的最小值为,则;的最小值为;则综上,或【小问3详解】由,对所有都成立.设,则,恒成立,在恒成立,当时,递减,则在递增,时取得最大值得,∴所以存在符合条件的实数,且m的取值范围为20、(1);(2)万件.【解析】(1)由题意,分别写出与对应的函数解析式,即可得分段函数解析式;(2)当时,利用二次函数的性质求解最大值,当时,利用基本不等式求解最大值,比较之后得整个范围的最大值.【详解】解:(1)当,时,当,时,∴(2)当,时,,∴当时,取得最大值(万元)当,时,当且仅当,即时等号成立.即时,取得最大值万元综上,所以即生产量为万件时,该厂在这一商品的生产中所获利润最大为万元【点睛】与函数相关的应用题在求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论