广东深圳平湖外国语学校2024届高一上数学期末教学质量检测试题含解析_第1页
广东深圳平湖外国语学校2024届高一上数学期末教学质量检测试题含解析_第2页
广东深圳平湖外国语学校2024届高一上数学期末教学质量检测试题含解析_第3页
广东深圳平湖外国语学校2024届高一上数学期末教学质量检测试题含解析_第4页
广东深圳平湖外国语学校2024届高一上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东深圳平湖外国语学校2024届高一上数学期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.设全集,集合,集合,则集合()A. B.C. D.2.已知为正实数,且,则的最小值为()A.4 B.7C.9 D.113.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是()A. B.C. D.4.若函数是函数(且)的反函数,且,则()A. B.C. D.5.的值是A. B.C. D.6.在中,下列关系恒成立的是A. B.C. D.7.下列函数,表示相同函数的是()A., B.,C., D.,8.已知偶函数在区间单调递减,则满足的x取值范围是A. B.C. D.9.函数f(x)=|x-2|-lnx在定义域内零点的个数为()A.0 B.1C.2 D.310.已知角的终边经过点,且,则的值为()A. B.C. D.11.给定函数:①;②;③;④,其中在区间上单调递减的函数序号是()A.①② B.②③C.③④ D.①④12.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=0二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若定义域为的函数满足:对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,则m的最大值为______.(是自然对数的底)14.正三棱锥中,,则二面角的大小为__________15.比较大小:________.16.设角的顶点与坐标原点重合,始变与轴的非负半轴重合,若角的终边上一点的坐标为,则的值为__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知集合且和集合(Ⅰ)求;(Ⅱ)若全集,集合,且,求a的取值范围18.某班级欲在半径为1米的圆形展板上做班级宣传,设计方案如下:用四根不计宽度的铜条将圆形展板分成如图所示的形状,其中正方形ABCD的中心在展板圆心,正方形内部用宣传画装饰,若铜条价格为10元/米,宣传画价格为20元/平方米,展板所需总费用为铜条的费用与宣传画的费用之和(1)设,将展板所需总费用表示成的函数;(2)若班级预算为100元,试问上述设计方案是否会超出班级预算?19.已知函数是定义在R上的奇函数.(1)求函数的解析式,判断并证明函数的单调性;(2)若存在实数,使成立,求实数的取值范围.20.如图,天津之眼,全称天津永乐桥摩天轮,是世界上唯一一个桥上瞰景摩天轮,是天津的地标之一.永乐桥分上下两层,上层桥面预留了一个长方形开口,供摩天轮轮盘穿过,摩天轮的直径为110米,外挂装48个透明座舱,在电力的驱动下逆时针匀速旋转,转一圈大约需要30分钟.现将某一个透明座舱视为摩天轮上的一个点,当点到达最高点时,距离下层桥面的高度为113米,点在最低点处开始计时.(1)试确定在时刻(单位:分钟)时点距离下层桥面的高度(单位:米);(2)若转动一周内某一个摩天轮透明座舱在上下两层桥面之间的运行时间大约为5分钟,问上层桥面距离下层桥面的高度约为多少米?21.已知集合,集合.(1)求集合;(2)求22.定义在上的函数(且)为奇函数(1)求实数的值;(2)若函数的图象经过点,求使方程在有解的实数的取值范围;(3)不等式对于任意的恒成立,求实数的取值范围.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】利用补集和交集的定义可求得结果.【详解】由已知可得或,因此,,故选:D.2、C【解析】由,展开后利用基本不等式求最值【详解】且,∴,当且仅当,即时,等号成立∴的最小值为9故选:C3、A【解析】由图象知函数的定义域排除选项选项B、D,再根据不成立排除选项C,即可得正确选项.【详解】由图知的定义域为,排除选项B、D,又因为当时,,不符合图象,所以排除C,故选:A【点睛】思路点睛:排除法是解决函数图象问题的主要方法,根据函数的定义域、与坐标轴的交点、函数值的符号、单调性、奇偶性等,从而得出正确结果.4、B【解析】由题意可得出,结合可得出的值,进而可求得函数的解析式.【详解】由于函数是函数(且)的反函数,则,则,解得,因此,.故选:B.5、B【解析】利用诱导公式求解.【详解】解:由诱导公式得,故选:B.6、D【解析】利用三角函数诱导公式,结合三角形的内角和为,逐个去分析即可选出答案【详解】由题意知,在三角形ABC中,,对A选项,,故A选项错误;对B选项,,故B选项错误;对C选项,,故C选项错误;对D选项,,故D选项正确.故选D.【点睛】本题考查了三角函数诱导公式,属于基础题7、B【解析】由两个函数相同的定义,定义域相同且对应法则相同,依次判断即可【详解】选项A,一个为指数运算、一个为对数运算,对应法则不同,因此不为相同函数;选项B,,为相同函数;选项C,函数定义域为,函数定义域为,因此不为相同函数;选项D,与函数对应法则不同,因此不为相同函数故选:B8、D【解析】根据题意,结合函数的奇偶性与单调性分析可得,解不等式可得x的取值范围,即可得答案【详解】根据题意,偶函数在区间单调递减,则在上为增函数,则,解可得:,即x的取值范围是;故选D【点睛】本题考查函数奇偶性与单调性综合应用,注意将转化为关于x不等式,属于基础题9、C【解析】分别画出函数y=lnx(x>0)和y=|x-2|(x>0)的图像,可得2个交点,故f(x)在定义域中零点个数为2.10、B【解析】根据点,先表示出该点和原点之间的距离,再根据三角函数的定义列出等式,解方程可得答案.【详解】因为角的终边经过点,则,因为,所以,且,解得,故选:B11、B【解析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解.【详解】①,为幂函数,且的指数,在上为增函数,故①不可选;②,,为对数型函数,且底数,在上为减函数,故②可选;③,在上为减函数,在上为增函数,故③可选;④为指数型函数,底数在上为增函数,故④不可选;综上所述,可选的序号为②③,故选B.【点睛】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题.12、A【解析】设出直线方程,利用待定系数法得到结果.【详解】设与直线平行的直线方程为,将点代入直线方程可得,解得则所求直线方程为.故A正确【点睛】本题主要考查两直线的平行问题,属容易题.两直线平行倾斜角相等,所以斜率相等或均不存在.所以与直线平行的直线方程可设为二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、##【解析】不妨设三边的大小关系为:,利用函数的单调性,得出,,的大小关系,作为三角形三边则有任意两边之和大于第三边,再利用基本不等式求出边的范围得出的最大值即可.【详解】在上严格增,所以,不妨设,因为对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,所以,因为,所以,因为对任意都成立,所以,所以,所以,所以,所以m的最大值为故答案为:.14、【解析】取中点为O,连接VO,BO在正三棱锥中,因为,所以,所以=,所以15、<【解析】利用诱导公式,将角转化至同一单调区间,根据单调性,比较大小.【详解】,,又在内单调递增,由所以,即<.故答案为:<.【点睛】本题考查了诱导公式,利用单调性比较正切值的大小,属于基础题.16、【解析】三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(Ⅰ);(Ⅱ).【解析】Ⅰ由函数的定义域及值域的求法得,,可求Ⅱ先求解C,再由集合的补集的运算及集合间的包含关系得,解得【详解】Ⅰ由,,得,即,解不等式,得,即,所以,Ⅱ解不等式得:,即,又,又,所以,解得:,【点睛】本题考查了函数的定义域及值域的求法,考查了集合的交集、补集的运算及集合间的包含关系,属于简单题18、(1);(2)上述设计方案是不会超出班级预算【解析】(1)过点O作,垂足为H,用表示出OH和PH,从而可得铜条长度和正方形的面积,进而得出函数式;(2)利用同角三角函数的关系和二次函数的性质求出预算的最大值即可得出结论【详解】(1)过点O作,垂足为H,则,,正方形ABCD的中心在展板圆心,铜条长为相等,每根铜条长,,展板所需总费用为(2),当时等号成立.上述设计方案是不会超出班级预算【点睛】本题考查了函数应用,三角函数恒等变换与求值,属于中档题19、(1),函数在上单调递减,证明见解析(2)【解析】(1)由为奇函数且定义域为R,则,即可求得,进而得到解析式;设,代入解析式中证得即可;(2)由奇函数,可将问题转化为,再利用单调性可得存在实数,使成立,即为存在实数,使成立,进而求解即可【详解】解:(1)为奇函数且定义域为R,所以,即,所以,所以,所以函数在R上单调递减,设,则,因为,所以,即,所以,所以,即,所以函数在上单调递减.(2)存在实数,使成立.由题,则存在实数,使成立,因为为奇函数,所以成立,又因为函数在R上单调递减,所以存在实数,使成立,即存在实数,使成立,而当时,,所以的取值范围是【点睛】本题考查利用函数奇偶性求解析式,考查定义法证明函数单调性,考查已知函数单调性求参数问题,考查转化思想和运算能力20、(1)米.(2)米.【解析】(1)如图,建立平面直角坐标系,以为始边,为终边的角为,计算得到答案.(2)根据对称性,上层桥面距离下层桥面的高度为点在分钟时距离下层桥面的高度,计算得到答案.【详解】(1)如图,建立平面直角坐标系.由题可知在分钟内所转过的角为,因为点在最低点处开始计时,所以以为始边,为终边的角为,所以点的纵坐标为,则(),故在分钟时点距离下层桥面的高度为(米).(2)根据对称性,上层桥面距离下层桥面的高度为点在分钟时距离下层桥面的高度.当时,故上层桥面距离下层桥面的高度约为米.【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.21、(1);(2)【解析】⑴解不等式求得集合⑵根据已知的集合,集合,运用交集的运算即可求得解析:(1)由已知得.(2).22、(1)1(2)(3)答案见解析【解析】(1)根据题意可得,即可得解;(2)根据函数的图象经过点,可得函数经过点,从而可求得,在求出函数在时的值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论