




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省平凉市静宁县一中2024届高一上数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似表示这些数据的规律,其中最合适的是()x1.992345.156.126y1.514.047.5112.0318.01A. B.C. D.2.,则()A.64 B.125C.256 D.6253.已知向量=(1,2),=(2,x),若⊥,则|2+|=()A. B.4C.5 D.4.如图,在正四棱柱中,,点是平面内的一个动点,则三棱锥的正视图和俯视图的面积之比的最大值为A B.C. D.5.空间直角坐标系中,已知点,则线段的中点坐标为A. B.C. D.6.已知函数在上单调递减,则实数a的取值范围是A. B.C. D.7.的值等于A. B.C. D.8.如图,质点在单位圆周上逆时针运动,其初始位置为,角速度为2,则点到轴距离关于时间的函数图象大致为()A. B.C. D.9.已知函数可表示为()xy2345则下列结论正确的是()A. B.的值域是C.的值域是 D.在区间上单调递增10.函数的定义域为,且为奇函数,当时,,则函数的所有零点之和是()A.2 B.4C.6 D.811.已知函数,若函数有4个零点,则的取值范围为()A. B.C. D.12.已知函数,则A.是奇函数,且在R上是增函数 B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数 D.是偶函数,且在R上是减函数二、填空题(本大题共4小题,共20分)13.已知函数集合,若集合中有3个元素,则实数的取值范围为________14.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是______.15.已知定义在上的奇函数,当时,,当时,________16.已知,,则函数的值域为______三、解答题(本大题共6小题,共70分)17.已知函数.(1)若,求的最大值;(2)若,求关于不等式的解集.18.求函数的定义域、值域与单调区间;19.求函数在区间上的最大值和最小值.20.已知.(1)化简;(2)若,求.21.已知△ABC中,A(2,-1),B(4,3),C(3,-2)(1)求BC边上的高所在直线的一般式方程;(2)求△ABC的面积22.已知直线l1过点A(1,0),B(3,a-1),直线l2过点M(1,2),N(a+2,4)(1)若l1∥l2,求a的值;(2)若l1⊥l2,求a的值
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】由题中表格可知函数在上是增函数,且y的变化随x的增大而增大得越来越快,逐一判断,选择与实际数据接近的函数得选项.【详解】解:由题中表格可知函数在上是增函数,且y的变化随x的增大而增大得越来越快,对于A,函数是线性增加的函数,与表中的数据增加趋势不符合,故A不正确;对于C,函数,当,与表中数据7.5的误差很大,不符合要求,故C不正确;对于D,函数,当,与表中数据4.04的误差很大,不符合要求,故D不正确;对于B,当,与表中数据1.51接近,当,与表中数据4.04接近,当,与表中数据7.51接近,所以,B选项的函数是最接近实际的一个函数,故选:B2、D【解析】根据对数的运算及性质化简求解即可.【详解】,,,故选:D3、C【解析】根据求出x的值,再利用向量的运算求出的坐标,最后利用模长公式即可求出答案【详解】因为,所以解得,所以,因此,故选C【点睛】本题主要考查向量的坐标预算以及模长求解,还有就是关于向量垂直的判定与性质4、B【解析】由题意可知,P在正视图中的射影是在C1D1上,AB在正视图中,在平面CDD1C1上的射影是CD,P的射影到CD的距离是AA1=2,所以三棱锥P﹣ABC的正视图的面积为三棱锥P﹣ABC的俯视图的面积的最小值为,所以三棱锥P﹣ABC的正视图与俯视图的面积之比的最大值为,故选B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.5、A【解析】点,由中点坐标公式得中得为:,即.故选A.6、C【解析】由函数单调性的定义,若函数在上单调递减,可以得到函数在每一个子区间上都是单调递减的,且当时,,求解即可【详解】若函数在上单调递减,则,解得.故选C.【点睛】本题考查分段函数的单调性.严格根据定义解答,本题保证随的增大而减小,故解答本题的关键是的最小值大于等于的最大值7、C【解析】因为,所以可以运用两角差的正弦公式、余弦公式,求出的值.【详解】,,,故本题选C.【点睛】本题考查了两角差的正弦公式、余弦公式、以及特殊角的三角函数值.其时本题还可以这样解:,.8、A【解析】利用角速度先求出时,的值,然后利用单调性进行判断即可【详解】因为,所以由,得,此时,所以排除CD,当时,越来越小,单调递减,所以排除B,故选:A9、B【解析】根据给定的对应值表,逐一分析各选项即可判断作答.【详解】由给定的对应值表知:,则,A不正确;函数的值域是,B正确,C不正确;当时,,即在区间上不单调,D不正确.故选:B10、B【解析】根据题意可知图象关于点中心对称,由的解析式求出时的零点,根据对称性即可求出时的零点,即可求解.【详解】因为为奇函数,所以函数的图象关于点中心对称,将的图象向右平移个单位可得的图象,所以图象关于点中心对称,当时,,令解得:或,因为函数图象关于点中心对称,则当时,有两解,为或,所以函数的所有零点之和是,故选:B第II卷(非选择题11、C【解析】转化为两个函数交点问题分析【详解】即分别画出和的函数图像,则两图像有4个交点所以,即故选:C12、A【解析】分析:讨论函数的性质,可得答案.详解:函数的定义域为,且即函数是奇函数,又在都是单调递增函数,故函数在R上是增函数故选A.点睛:本题考查函数的奇偶性单调性,属基础题.二、填空题(本大题共4小题,共20分)13、或【解析】令,记的两根为,由题知的图象与直线共有三个交点,从而转化为一元二次方程根的分布问题,然后可解.【详解】令,记的零点为,因为集合中有3个元素,所以的图象与直线共有三个交点,则,或或当时,得,,满足题意;当时,得,,满足题意;当时,,解得.综上,t的取值范围为或.故答案为:或14、60°【解析】取BC的中点E,则,则即为所求,设棱长为2,则,15、【解析】设,则,代入解析式得;再由定义在上的奇函数,即可求得答案.【详解】不妨设,则,所以,又因为定义在上的奇函数,所以,所以,即.故答案为:.16、【解析】,又,∴,∴故答案为三、解答题(本大题共6小题,共70分)17、(1)(2)答案见解析【解析】(1)由题得,利用基本不等式可求;(2)不等式即,讨论的大小可求解.【小问1详解】由,得.,,即(当且仅当时“”成立.).故的最大值为;【小问2详解】,即.当时,即时,不等式的解集为当时,即时,不等式的解集为;当时,即时,不等式的解集为.综上,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.18、定义域为,值域为,递减区间为,递增区间为.【解析】由函数的解析式有意义列出不等式,可求得其定义域,由,结合基本不等式,可求得函数的值域,令,根据对勾函数的性质和复合函数的单调性的判定方法,可求得函数的单调区间.【详解】由题意,函数有意义,则满足且,因为方程,所以,解得,所以函数的定义域为又由,因为,所以,当且仅当时,即时,等号成立,所以,所以函数的值域为,令,根据对勾函数的性质,可得函数在区间上单调递减,在上单调递增,结合复合函数的单调性的判定方法,可得在上单调递减,在上单调递增.19、最大值53,最小值4【解析】先化简,然后利用换元法令t=2x根据变量x的范围求出t的范围,将原函数转化成关于t的二次函数,最后根据二次函数的性质求在闭区间上的最值即可【详解】∵,令,,则,对称轴,则在上单调递减;在上单调递增.则,即时,;,即时,.【点睛】本题主要考查了函数的最值及其几何意义,以及利用换元法转化成二次函数求解值域的问题,属于基础题20、(Ⅰ);(Ⅱ).【解析】【试题分析】(1)利用诱导公式和同角三角函数关系,可将原函数化简为;(2)首先除以,即除以,然后分子分母同时除以,将所求式子转化为仅含有的表达式来求解.【试题解析】(Ⅰ)(Ⅱ)==21、(1)x+5y+3=0;(2)S△ABC=3【解析】求三角形一边的高所在的直线方程时,可利用点斜式求解,由于高线过三角形一个顶点,与对边垂直,借助垂直求出斜率,利用点斜式写出直线方程,已知三角形三个顶点的坐标求面积,最简单的方法是求出一边的长以及这边所在直线的方程,高线长利用点到直线的距离公式求出,从而求出面积.试题解析:(1)由斜率公式,得kBC=5,所以BC边上的高所在直线方程为y+1=-(x-2),即x+5y+3=0.(2)由两点间的距离公式,得|BC|=,BC边所在的直线方程为y+2=5(x-3),即5x-y-17=0,所以点A到直线BC的距离d=,故S△ABC=.【点睛】已知三角形三个顶点的坐标求面积,最简单的方法是求出一边的长以及这边所在直线的方程,高线长利用点到直线的距离公式求出,从而求出面积,还可求出三边长借助海伦公式去求;求三角形一边的高所在的直线方程时,可利用点斜式求解,由于高线过三角形一个顶点,与对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家具水濂柜供货合同5篇
- 专业设计服务项目绩效评估报告
- 非临床安全性评价服务项目绩效评估报告
- 信息化教学大赛方案设计
- 中华优传统文化 课件 第五章 中国传统哲学
- 妇科疾病超声诊断应用与规范
- 2025西安建筑科技大学华清学院辅导员考试试题及答案
- 2025贵州护理职业技术学院辅导员考试试题及答案
- 2025石家庄信息工程职业学院辅导员考试试题及答案
- 卫生院安全培训
- 醇基燃料技术资料
- 施工企业资质及承接工程的范围
- 泥浆测试记录表
- 《摩擦力》说课课件(全国获奖实验说课案例)
- 个人信用报告异议申请表
- 初中数学 北师大版 七年级下册 变量之间的关系 用图象表示的变量间关系 课件
- 2023年艺术与审美期末试卷答案参考
- 电气工程竣工验收表格模板
- 制程品质检验流程图
- 必修地球圈层结构通用PPT课件
- 物联网体系结构PPT课件
评论
0/150
提交评论