海西市重点中学2024届数学高一上期末经典模拟试题含解析_第1页
海西市重点中学2024届数学高一上期末经典模拟试题含解析_第2页
海西市重点中学2024届数学高一上期末经典模拟试题含解析_第3页
海西市重点中学2024届数学高一上期末经典模拟试题含解析_第4页
海西市重点中学2024届数学高一上期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海西市重点中学2024届数学高一上期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.集合,,则间的关系是()A. B.C. D.2.已知等比数列满足,,则()A. B.C. D.3.已知指数函数在上单调递增,则实数的值为()A. B.1C. D.24.下列命题中是真命题的是()A.“”是“”的充分条件B.“”是“”的必要条件C.“”是“”的充要条件D.“”是“”的充要条件5.命题“,”的否定为()A., B.,C, D.,6.给定已知函数.若动直线y=m与函数的图象有3个交点,则实数m的取值范围为A. B.C. D.7.已知函数在区间是减函数,则实数a的取值范围是A. B.C. D.8.设,,,则的大小顺序是A. B.C. D.9.已知函数在区间上的值域为,对任意实数都有,则实数的取值范围是()A. B.C. D.10.函数与的图象交于两点,为坐标原点,则的面积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数在上单调递减,则实数的取值范围是______.12.已知,则_________.13.已知函数,若,则实数_________14.设集合,,若,则实数的取值范围是________15.已知函数,若对恒成立,则实数的取值范围是___________.16.夏季为旅游旺季,青岛某酒店工作人员为了适时为游客准备食物,调整投入,减少浪费,他们统计了每个月的游客人数,发现每年各个月份的游客人数会发生周期性的变化,并且有以下规律:①每年相同的月份,游客人数基本相同;②游客人数在2月份最少,在8月份最多,相差约200人;③2月份的游客约为60人,随后逐月递增直到8月份达到最多.则用一个正弦型三角函数描述一年中游客人数与月份之间关系为__________;需准备不少于210人的食物的月份数为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求函数的最小正周期;(2)用“五点法”做出在区间的简图18.已知函数.(1)求函数振幅、最小正周期、初相;(2)用“五点法”画出函数在上的图象19.如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,点D是AB的中点(1)求证:CD⊥平面A1ABB1;(2)求证:AC1∥平面CDB120.某手机生产商计划在2022年利用新技术生产某款新手机,通过市场分析,生产此款手机全年需投入固定成本200万元,每生产(千部)手机,需另投人成本万元,且,由市场调研知,每部手机售价0.5万元,且全年内生产的手机当年能全部销售完.(1)求出2022年的利润(万元)关于年产量(千部)的函数关系式;(利润销售额成本)(2)2022年产量为多少千部时,该生产商所获利润最大?最大利润是多少?21.设函数.(1)求的单调增区间;(2)求在上的最大值与最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】解指数不等式和一元二次不等式得集合,再判断各选项【详解】由题意,或,所以,即故选:D【点睛】本题考查集合的运算与集合的关键,考查解一元二次不等式,指数不等式,掌握指数函数性质是解题关键2、C【解析】由题意可得,所以,故,选C.考点:本题主要考查等比数列性质及基本运算.3、D【解析】解方程即得或,再检验即得解.【详解】解:由题得或.当时,上单调递增,符合题意;当时,在上单调递减,不符合题意.所以.故选:D4、B【解析】利用充分条件、必要条件的定义逐一判断即可.【详解】因为是集合A的子集,故“”是“”的必要条件,故选项A为假命题;当时,则,所以“”是“”的必要条件,故选项B为真命题;因为是上的减函数,所以当时,,故选项C为假命题;取,,但,故选项D为假命题.故选:B.5、B【解析】根据特称命题的否定为全称命题可得.【详解】根据特称命题的否定为全称命题,可得命题“,”的否定为“,”故选:B.6、B【解析】画出函数的图像以及直线y=k的图像,根据条件和图像求得k的范围。【详解】设,由题可知,当,即或时,;当,即时,,因为,故当时,,当时,,做出函数的图像如图所示,直线y=m与函数有3个交点,可得k的范围为(4,5).故选:B【点睛】本题考查函数图像与直线有交点问题,先分别求出各段函数的解析式,再利用数形结合的方法得到参数的取值范围。7、C【解析】先由题意得到二次函数在区间是增函数,且在上恒成立;列出不等式组求解,即可得出结果.【详解】因为函数在区间是减函数,所以只需二次函数在区间是增函数,且在上恒成立;所以有:,解得;故选C【点睛】本题主要考查由对数型复合函数的单调性求参数的问题,熟记对数函数与二次函数的性质即可,属于常考题型.8、A【解析】利用对应指数函数或对数函数的单调性,分别得到其与中间值0,1的大小比较,从而判断的大小.【详解】因为底数2>1,则在R上为增函数,所以有;因为底数,则为上的减函数,所以有;因为底数,所以为上的减函数,所以有;所以,答案为A.【点睛】本题为比较大小的题型,常利用函数单调性法以及中间值法进行大小比较,属于基础题.9、D【解析】根据关于对称,讨论与的关系,结合其区间单调性及对应值域求的范围.【详解】由题设,,易知:关于对称,又恒成立,当时,,则,可得;当时,,则,可得;当,即时,,则,即,可得;当,即时,,则,即,可得;综上,.故选:D.【点睛】关键点点睛:利用分段函数的性质,讨论其对称轴与给定区间的位置关系,结合对应值域及求参数范围.10、A【解析】令,解方程可求得,由此可求得两点坐标,得到关于点对称,由可求得结果.【详解】令,,解得:或(舍),,或,则或,不妨令,,则关于点对称,.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据分段函数的单调性,可知每段函数的单调性,以及分界点处的函数的的大小关系,即可列式求解.【详解】因为分段函数在上单调递减,所以每段都单调递减,即,并且在分界点处需满足,即,解得:.故答案为:12、【解析】由题意可得:点睛:熟记同角三角函数关系式及诱导公式,特别是要注意公式中的符号问题;注意公式的变形应用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.这是解题中常用到的变形,也是解决问题时简化解题过程的关键所在13、【解析】分和求解即可.【详解】当时,,所以(舍去);当时,,所以(符合题意).故答案为:.14、【解析】对于方程,由于,解得集合,由,根据区间端点值的关系列式求得的范围【详解】解:对于,由于,,,;∴∵,集合,∴解得,,则实数的取值范围是故答案为:15、【解析】需要满足两个不等式和对都成立.【详解】和对都成立,令,得在上恒成立,当时,只需即可,解得;当时,只需即可,解得(舍);综上故答案为:16、①.②.5【解析】设函数为,根据题意,即可求得函数的解析式,再根据题意得出不等式,即可求解.【详解】设该函数为,根据条件①,可知这个函数的周期是12;由②可知,最小,最大,且,故该函数的振幅为100;由③可知,在上单调递增,且,所以,根据上述分析,可得,解得,且,解得,又由当时,最小,当时,最大,可得,且,又因为,所以,所以游客人数与月份之间的关系式为,由条件可知,化简得,可得,解得,因为,且,所以,即只有五个月份要准备不少于210人的食物.故答案为:;.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)答案见解析【解析】(1)利用两角和的正弦公式及二倍角公式化简即可得解;(2)列表,描点,即可作出图像.【详解】(1)由题意所以函数的最小正周期;(2)列表00作图如下:18、(1)振幅为,最小正周期为,初相为;(2)答案见解析.【解析】(1)首先利用三角恒等变换把三角函数的关系式变形为正弦型函数,利用关系式即求;(2)利用整体思想,使用“五点法”,采用列表、描点、连线画出函数的图像.【小问1详解】∵,∴振幅为,最小正周期为,初相为;【小问2详解】列表0x011+10故函数在上的图像如下图所示:19、(1)见解析(2)见解析【解析】(1)欲证CD⊥平面A1ABB1,可先证平面ABC⊥平面A1ABB1,CD⊥AB,面ABC∩面A1ABB1=AB,满足根据面面垂直的性质;(2)欲证AC1∥平面CDB1,根据直线与平面平行的判定定理可知只需证AC1与平面CDB1内一直线平行,连接BC1,设BC1与B1C的交点为E,连接DE.根据中位线可知DE∥AC1,DE⊂平面CDB1,AC1⊄平面CDB1,满足定理所需条件【详解】(1)证明:∵ABC-A1B1C1是直三棱柱,∴平面ABC⊥平面A1ABB1∵AC=BC,点D是AB的中点,∴CD⊥AB,面ABC∩面A1ABB1=AB∴CD⊥平面A1ABB1(2)证明:连接BC1,设BC1与B1C的交点为E,连接DE∵D是AB的中点,E是BC1的中点,∴DE∥AC1.∵DE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1【点睛】本题考查直线与平面平行的判定,直线与平面垂直的判定,考查学生空间想象能力,逻辑思维能力,是中档题20、(1)(2)2022年产量为千部时,该生产商所获利润最大,最大利润是3800万元【解析】(1)根据题意,建立分段函数模型得;(2)结合(1)的函数模型,分类讨论求解最值即可得答案.【小问1详解】解:销售千部手机获得的销售额

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论