版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省重点初中2024届数学高一上期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知表示不大于的最大整数,若函数在上仅有一个零点,则实数的取值范围为()A. B.C. D.2.,,的大小关系是()A. B.C. D.3.古希腊数学家阿基米德最为满意的一个数学发现是“圆柱容球”,即在球的直径与圆柱底面的直径和圆柱的高相等时,球的体积是圆柱体积的,且球的表面积也是圆柱表面积的.已知体积为的圆柱的轴截面为正方形.则该圆柱内切球的表面积为()A B.C. D.4.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行5.如图,网格纸上小正方形的边长均为,粗线画出的是某几何体的三视图,若该几何体的体积为,则()A. B.C. D.6.定义在上的偶函数满足当时,,则A. B.C. D.7.为了得到函数的图象,可以将函数的图象()A.沿轴向左平移个单位 B.沿轴向右平移个单位C.沿轴向左平移个单位 D.沿轴向右平移个单位8.函数的增区间是A. B.C. D.9.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约米,肩宽约为米,“弓”所在圆的半径约为米,你估测一下掷铁饼者双手之间的距离约为(参考数据:,)()A.米 B.米C.米 D.米10.已知实数,,,则,,的大小关系为()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知,则________12.设是以2为周期的奇函数,且,若,则的值等于___13.已知函数,若,则实数_________14.有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%,有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从__________年开始,快递业产生的包装垃圾超过4000万吨.(参考数据:,)15.—个几何体的三视图如图所示,则该几何体的体积为__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.在平面四边形中(如图甲),已知,且现将平面四边形沿折起,使平面平面(如图乙),设点分别为的中点.(1)求证:平面平面;(2)若三棱锥的体积为,求的长.17.已知函数,(1)若函数在区间上存在零点,求正实数的取值范围;(2)若,,使得成立,求正实数的取值范围18.函数()(1)当时,①求函数的单调区间;②求函数在区间的值域;(2)当时,记函数的最大值为,求的表达式19.(1)已知是奇函数,求的值;(2)画出函数图象,并利用图象回答:为何值时,方程无解?有一解?有两解.20.已知函数(1)若,,求;(2)将函数的图象先向左平移个单位长度,再把所得图象上所有点的横坐标变为原来的,纵坐标不变,得到函数的图象.求函数的单调递增区间21.已知函数,,且.(1)求实数m的值,并求函数有3个不同的零点时实数b的取值范围;(2)若函数在区间上为增函数,求实数a的取值范围.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】根据题意写出函数表达式为:,在上仅有一个零点分两种情况,情况一:在第一段上有零点,,此时检验第二段无零点,故满足条件;情况二,第二段有零点,以上两种情况并到一起得到:.故答案为C.点睛:在研究函数零点时,有一种方法是把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论.2、D【解析】作出弧度角的正弦线、余弦线和正切线,利用三角函数线来得出、、的大小关系.【详解】作出弧度角的正弦线、余弦线和正切线如下图所示,则,,,其中虚线表示的是角的终边,,则,即.故选:D.【点睛】本题考查同角三角函数值的大小比较,一般利用三角函数线来比较,考查数形结合思想的应用,属于基础题.3、A【解析】由题目给出的条件可知,圆柱内切球的表面积圆柱表面积的,通过圆柱的体积求出圆柱底面圆半径和高,进而得出表面积,再计算内切球的表面积.【详解】设圆柱底面圆半径为,则圆柱高为,圆柱体积,解得,又圆柱内切球的直径与圆柱底面的直径和圆柱的高相等,所以内切球的表面积是圆柱表面积的,圆柱表面积为,所以内切球的表面积为.故选:A.4、C【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.5、B【解析】作出几何体实物图,并将该几何体的体积用表示,结合题中条件可求出的值.【详解】由三视图可知,该几何体由一个正方体截去四分之一而得,其体积为,即,解得.故选:B.【点睛】本题考查利用三视图计算空间几何体的体积,解题的关键就是作出几何体的实物图,考查空间想象能力与计算能力,属于中等题.6、B【解析】分析:先根据得周期为2,由时单调性得单调性,再根据偶函数得单调性,最后根据单调性判断选项正误.详解:因为,所以周期为2,因为当时,单调递增,所以单调递增,因为,所以单调递减,因为,,所以,,,,选B.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行.7、C【解析】利用函数y=Asin(ωx+φ)的图象变换规律,得出结论【详解】,将函数的图象沿轴向左平移个单位,即可得到函数的图象,故选:C【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题8、A9、C【解析】先计算弓所在的扇形的弧长,算出其圆心角后可得双手之间的距离.【详解】弓形所在的扇形如图所示,则的长度为,故扇形的圆心角为,故.故选:C.10、A【解析】利用指数函数和对数函数的单调性比较a三个数与0、1的大小关系,由此可得出a、b、c大小关系.【详解】解析:由题,,,即有.故选:A.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】利用和的齐次分式,表示为表示的式子,即可求解.【详解】.故答案为:12、【解析】先利用求得的值,再依据题给条件用来表示,即可求得的值【详解】∵,∴,又∵是以2为周期的奇函数,∴故答案为:13、【解析】分和求解即可.【详解】当时,,所以(舍去);当时,,所以(符合题意).故答案为:.14、2021【解析】设快递行业产生的包装垃圾为y万吨,n表示从2015年开始增加的年份的数量,由题意可得y=400×(1+50%)n=400×(两边取对数可得n(lg3-lg2)=1,∴n(0.4771-0.3010)=1,解得0.176n=1,解得n≈6,∴从2015+6=2021年开始,快递行业产生的包装垃圾超过4000万吨.故答案为202115、30【解析】由三视图可知这是一个下面是长方体,上面是个平躺着的五棱柱构成的组合体长方体的体积为五棱柱的体积是故该几何体的体积为点睛:本题主要考查的知识点是由三视图求面积,体积.本题通过观察三视图这是一个下面是长方体,上面是个平躺着的五棱柱构成的组合体,分别求出长方体和五棱柱的体积,然后相加可得答案三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)证明见解析;(2).【解析】(1)先证明平面又,则平面进而即可证明平面平面;(2)由,结合面积体积公式求解即可【详解】(1)在图乙中,平面平面且平面平面,底面又,且平面而分别是中点,平面又平面平面平面.(2)由(1)可知,平面,设,则.,即.17、(1)(2)【解析】(1)结合函数的单调性及零点存在定理可得结论;(2)由题意可得在,上,,由函数的单调性求得最值,解不等式可得所求范围【小问1详解】函数,因为在区间上单调递减,又,所以在区间上单调递减,所以在区间上单调递减,若在区间上存在零点,则.【小问2详解】存在,,,使得成立,等价为在,上,由在,递增,可得的最小值为,又,所以在,递减,可得的最大值为,由,解得,所以;综上可得,的范围是18、(1)①的单调递增区间为,;单调递减区间为;②(2)【解析】(1)①分别在和两种情况下,结合二次函数的单调性可确定结果;②根据①中单调性可确定最值点,由最值可确定值域;(2)分别在、、三种情况下,结合二次函数对称轴位置与端点值的大小关系可确定最大值,由此得到.【小问1详解】当时,;①当时,,在上单调递增;当时,,在上单调递减,在上单调递增;综上所述:的单调递增区间为,;单调递减区间为②由①知:在上单调递增,在上单调递减,在上单调递增,,;,,,,,,在上的值域为.【小问2详解】由题意得:①当,即时,,对称轴为;当,即时,在上单调递增,;当,即时,在上单调递增,在上单调递减,;②当,即时,若,;若,;当时,,对称轴,在上单调递增,;③当,即时在上单调递增,在上单调递减,在上单调递增,,若,即时,;若,即时,;综上所述:.19、(1);(2)时,无解;时,有两个解;或时,有一个解.【解析】(1)由奇函数的定义,,代入即可得出结果.(2)画出函数图象,结合函数图象可得出结果.【详解】(1)为奇函数,,所以(2)函数图象如图,可知时,无解;时,有两个解;或时,有一个解【点睛】本题考查了奇函数的定义,考查了运算求解能力和画图能力,数形结合思想,属于基础题目.20、(1)(2)【解析】(1)由平方关系求出,再由求解即可;(2)由伸缩变换和平移变换得出的解析式,再由正弦函数的性质得出函数的单调递增区间【小问1详解】依题意,因为,所以,所以从而【小问2详解】将函数的图象先向左平移个单位长度,得到函数的图象再把所得图象上所有点的横坐标变为原来的,得到函数的图象令,的单调递增区间是所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度合同公司管理制度与绿色供应链管理合同3篇
- 2025年度矿山安全生产标准化建设合同3篇
- 二零二五年度城市绿化工程项目物资采购合同风险识别与应对3篇
- 标题27:2025年度公司借用办公场地协议3篇
- 二零二五年度股东在公司设立前知识产权归属协议3篇
- 二零二五年度全新出售房屋买卖绿色认证合同3篇
- 二零二五年度共享办公房屋无偿使用及配套服务合同3篇
- 2025年农村合作建房质量安全监督协议范本
- 二零二五年度电影主题公园运营管理合同3篇
- 2025年度智能仓储物流系统整体转让协议版3篇
- 无人机表演服务合同
- 呼吸内科临床诊疗指南及操作规范
- 物业经理转正述职
- 贸易岗位招聘面试题及回答建议(某大型国企)2025年
- 北师大版(2024新版)生物七年级上册期末考点复习提纲
- 艺术哲学:美是如何诞生的学习通超星期末考试答案章节答案2024年
- X62W万能铣床电气原理图解析(共18页)
- 小康煤矿水文地质类型划分报告
- (完整版)中央空调现场勘察信息表
- 三路频分复用系统设计
- 车间6s现场管理建议车间6S现场管理制度
评论
0/150
提交评论