新人教版七年级上册第二单元数学整式加减单元测试题及答案_第1页
新人教版七年级上册第二单元数学整式加减单元测试题及答案_第2页
新人教版七年级上册第二单元数学整式加减单元测试题及答案_第3页
新人教版七年级上册第二单元数学整式加减单元测试题及答案_第4页
新人教版七年级上册第二单元数学整式加减单元测试题及答案_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

七年级整式加减测试题一.选择题(共10小题共20分)1.计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y2.若2ym+5xn+3与﹣3x2y3是同类项,则mn=()A. B. C.1 D.﹣23.下列各式中,是3a2b的同类项的是()A.2x2y B.﹣2ab2 C.a2b D.3ab4.若﹣x3ym与xny是同类项,则m+n的值为()A.1 B.2 C.3 D.45.下列计算正确的是()A.3a﹣2a=1 B.B、x2y﹣2xy2=﹣xy2C.3a2+5a2=8a4D.3ax﹣2xa=ax6.若单项式2xnym﹣n与单项式3x3y2n的和是5xny2n,则m与n的值分别是()A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=37.下列判断错误的是()A.若x<y,则x+2010<y+2010B.单项式的系数是﹣4C.若|x﹣1|+(y﹣3)2=0,则x=1,y=3D.一个有理数不是整数就是分数8.化简m﹣n﹣(m+n)的结果是()A.0 B.2m C.﹣2nD.2m﹣2n9.已知a,b两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|﹣|a﹣2|+|b+2|的结果是()A.2a+2b B.2b+3 C.2a﹣3 D.﹣1若x﹣y=2,x﹣z=3,则(y﹣z)2﹣3(z﹣y)+9的值为()A.13 B.11 C.5 D.7二.填空题(共10小题共30分)11.如果单项式﹣xyb+1与xa﹣2y3是同类项,那么(a﹣b)2015=.12.若单项式2x2ym与的和仍为单项式,则m+n的值是.13.若﹣2x2ym与6x2ny3是同类项,则mn=.14.单项式﹣4x2y3的系数是,次数.15.单项式的系数与次数之积为.16.多项式与m2+m﹣2的和是m2﹣2m.17.多项式﹣2m2+3m﹣的各项系数之积为.18.在代数式3xy2,m,6a2﹣a+3,12,,中,单项式有个,多项式有个.19.单项式﹣2πa2bc的系数是.20.观察一列单项式:x,3x2,5x3,7x,9x2,11x3…,则第2013个单项式是.三.解答题(共6小题共70分21题每小题4分、每题6分、27与28题各8分21.合并同类项/化简(每小题4分)(1)3a﹣2b﹣5a+2b(2)(2m+3n﹣5)﹣(2m﹣n﹣5)(3)7x﹣y+5x﹣3y+3(4)2(x2y+3xy2)﹣3(2xy2﹣4x2y)(5)a2+(2a2﹣b2)+b2(6)6a2b+(2a+1)﹣2(3a2b﹣a)23、已知|a﹣2|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]的值(6分)24、已知x=3时,多项式ax3﹣bx+5的值是1,求当x=﹣3时,ax3﹣bx+5的值(6分)25.化简:8n2﹣[4m2﹣2m﹣(2m2﹣5m)].(6分)26.已知代数式mx3+x3﹣nx+2015x﹣1的值与x的取值无关.求mx的值;(6分)27.已知:A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1.若3A+6B的值与x的值无关,求y的值.(8)28.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值.(8)

20XX年10月27日113859的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2015•镇江)计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y考点:整式的加减.专题:计算题.分析:原式去括号合并即可得到结果.解答:解:原式=﹣3x+6y+4x﹣8y=x﹣2y,故选A点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.2.(2015•临淄区校级模拟)若2ym+5xn+3与﹣3x2y3是同类项,则mn=()A. B. C.1 D.﹣2考点:同类项.专题:计算题.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m+5=3,n+3=2,求出n,m的值,再代入代数式计算即可.解答:解:∵2ym+5xn+3与﹣3x2y3是同类项,∴m+5=3,n+3=2,∴m=﹣2,n=﹣1,∴mn=(﹣2)﹣1=﹣.故选B.点评:本题考查同类项的定义、方程思想,是一道基础题,比较容易解答,但有的学生可能会把x与y的指数混淆.3.(2015•盐城校级三模)下列各式中,是3a2b的同类项的是()A.2x2y B.﹣2ab2 C.a2b D.3ab考点:同类项.分析:运用同类项的定义判定即可解答:解:A、2x2y,字母不同,故A选项错误;B、﹣2ab2,相同字母的指数不同,故B选项错误;C、a2b是3a2b的同类项,故C选项正确;D、3ab,相同字母的指数不同,故D选项错误.故选:C.点评:本题主要考查了同类项,解题的关键是运用同类项的定义判定即可.4.(2015•石峰区模拟)若﹣x3ym与xny是同类项,则m+n的值为()A.1 B.2 C.3 D.4考点:同类项.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.解答:解:根据题意得:n=3,m=1,则m+n=4.故选D.点评:本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.5.(2015•达州模拟)下列计算正确的是()A.3a﹣2a=1 B.x2y﹣2xy2=﹣xy2C.3a2+5a2=8a4 D.3ax﹣2xa=ax考点:合并同类项.分析:根据合并同类项的法则,把同类项的系数加减,字母与字母的指数不变,进行计算作出正确判断.解答:解:A、3a﹣2a=a,错误;B、x2y与2xy2不是同类项,不能合并,故错误;C、3a2+5a2=8a2,故错误;D、符合合并同类项的法则,正确.故选D.点评:本题属于简单题型,只要熟记合并同类项法则即可.6.(2015•重庆校级模拟)若单项式2xnym﹣n与单项式3x3y2n的和是5xny2n,则m与n的值分别是()A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=3考点:合并同类项.分析:根据同类项的概念,列出方程求解.解答:解:由题意得,,解得:.故选C.点评:本题考查了合并同类项,解答本题的关键是掌握同类项定义中的相同字母的指数相同.7.(2015•宝应县校级模拟)下列判断错误的是()A.若x<y,则x+2010<y+2010B.单项式的系数是﹣4C.若|x﹣1|+(y﹣3)2=0,则x=1,y=3D.一个有理数不是整数就是分数考点:单项式;有理数;非负数的性质:绝对值;有理数大小比较;非负数的性质:偶次方.分析:分别根据单项式系数的定义、不等式的性质、非负数的性质即及有理数的定义对各选项进行逐一分析即可.解答:解:A、∵x<y,∴x+2010<y+2010,故本选项正确;B、∵单项式﹣的数字因数是﹣,∴此单项式的系数是﹣,故本选项错误;C、∵|x﹣1|+(y﹣3)2=0,∴x﹣1=0,y﹣3=0,解得x=1,y=3,故本选项正确;D、∵整数和分数统称为有理数,∴一个有理数不是整数就是分数,故本选项正确.故选:B.点评:本题考查的是单项式,熟知单项式系数的定义、不等式的性质、非负数的性质即及有理数的定义是解答此题的关键.8.(2015•泰安模拟)化简m﹣n﹣(m+n)的结果是()A.0 B.2m C.﹣2n D.2m﹣2n考点:整式的加减.分析:根据整式的加减运算法则,先去括号,再合并同类项.注意去括号时,括号前是负号,去括号时,括号里各项都要变号;合并同类项时,只把系数相加减,字母和字母的指数不变.解答:解:原式=m﹣n﹣m﹣n=﹣2n.故选C.点评:解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.9.(2015•泗洪县校级模拟)已知a,b两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|﹣|a﹣2|+|b+2|的结果是()A.2a+2b B.2b+3 C.2a﹣3 D.﹣1考点:整式的加减;数轴;绝对值.分析:根据a,b两数在数轴上对应的点的位置可得:b<﹣1<1<a<2,然后进行绝对值的化简,最后去括号合并求解.解答:解:由图可得:b<﹣1<1<a<2,则有:|a+b|﹣|a﹣2|+|b+2|=a+b+(a﹣2)+b+2=a+b+a﹣2+b+2=2a+2b.故选A.点评:本题考查了整式的加减,解答本题的关键是根据a、b在数轴上的位置进行绝对值的化简.10.(2015春•淅川县期末)若x﹣y=2,x﹣z=3,则(y﹣z)2﹣3(z﹣y)+9的值为()A.13 B.11 C.5 D.7考点:整式的加减—化简求值.分析:先求出z﹣y的值,然后代入求解.解答:解:∵x﹣y=2,x﹣z=3,∴z﹣y=(x﹣y)﹣(x﹣z)=﹣1,则原式=1+3+9=13.故选A.点评:本题考查了整式的加减﹣化简求值,解答本题的关键是根据题目所给的式子求出z﹣y的值,然后代入求解.二.填空题(共10小题)11.(2015•遵义)如果单项式﹣xyb+1与xa﹣2y3是同类项,那么(a﹣b)2015=1.考点:同类项.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)可得:a﹣2=1,b+1=3,解方程即可求得a、b的值,再代入(a﹣b)2015即可求解.解答:解:由同类项的定义可知a﹣2=1,解得a=3,b+1=3,解得b=2,所以(a﹣b)2015=1.故答案为:1.点评:考查了同类项,要求代数式的值,首先要求出代数式中的字母的值,然后代入求解即可.12.(2015•泗洪县校级模拟)若单项式2x2ym与的和仍为单项式,则m+n的值是5.考点:同类项.专题:计算题.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m=3,n=2,再代入代数式计算即可.解答:解:由题意得:n=2,m=3,∴m+n=5,故答案为:5.点评:本题考查同类项的知识,注意掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.(2015•诏安县校级模拟)若﹣2x2ym与6x2ny3是同类项,则mn=3.考点:同类项.分析:根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值,即可解答.解答:解:∵﹣2x2ym与6x2ny3是同类项,∴,解得,mn=3,故答案为:3.点评:本题考查了同类项,利用同类项得出关于m、n的方程组是解题关键.14.(2015•衡阳县校级二模)单项式﹣4x2y3的系数是﹣4,次数是5.考点:单项式.专题:计算题.分析:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.解答:解:单项式﹣4x2y3的系数是﹣4,次数是5.故答案为:﹣4、5.点评:此题考查了单项式的知识,掌握单项式的系数、次数的定义是解答本题的关键.15.(2015•长沙校级二模)单项式的系数与次数之积为﹣2.考点:单项式.分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.求出次数和系数,再将其相乘即可.解答:解:根据单项式定义得:单项式的系数是﹣,次数是3;其系数与次数之积为﹣×3=﹣2.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.(2015•徐州模拟)多项式﹣3m+2与m2+m﹣2的和是m2﹣2m.考点:整式的加减.专题:计算题.分析:根据题意列出关系式,去括号合并即可得到结果.解答:解:根据题意得:(m2﹣2m)﹣(m2+m﹣2)=m2﹣2m﹣m2﹣m+2=﹣3m+2.故答案为:﹣3m+2.点评:此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.17.(2015秋•开封校级月考)多项式﹣2m2+3m﹣的各项系数之积为3.考点:多项式.分析:根据多项式各项系数的定义求解.多项式的各项系数是单项式中各项的系数,由此即可求解.解答:解:多项式﹣2m2+3m﹣的各项系数之积为:﹣2×3×(﹣)=3.故答案为:3.点评:此题主要考查了多项式的相关定义,解题的关键是熟练掌握多项式的各项系数和次数的定义即可求解.18.(2015春•乐平市期中)在代数式3xy2,m,6a2﹣a+3,12,,中,单项式有3个,多项式有2个.考点:多项式;单项式.专题:计算题.分析:数字与字母或字母与字母的乘积为单项式,单独一个数字或字母也是单项式;多项式为几个单项式的和组成,即可做出判断.解答:解:代数式3xy2,m,6a2﹣a+3,12,4x2yz﹣xy2,中,单项式有3xy2,m,12共3个,多项式有6a2﹣a+3,4x2yz﹣xy2共2个.故答案为:3;2点评:此题考查了多项式与单项式,熟练掌握各自的定义是解本题的关键.19.(2014•高港区二模)单项式﹣2πa2bc的系数是﹣2π.考点:单项式.分析:根据单项式系数的定义来判断,单项式中数字因数叫做单项式的系数.解答:解:根据单项式系数的定义,单项式﹣2πa2bc的系数是﹣2π,故答案为:﹣2π.点评:本题属于简单题型,注意单项式中的数字因数叫做单项式的系数.20.(2015春•滨海县校级月考)观察一列单项式:x,3x2,5x3,7x,9x2,11x3…,则第2013个单项式是4025x3.考点:单项式.专题:规律型.分析:根据题意找出规律,根据此规律即可得出结论.解答:解:第一个单项式=x;第二个单项式=(1+2)x2=3x2;第三个单项式=(1+2+2)x3=5x3;第四个单项式=(1+2+2+2)x2=x2;…,∴第四个单项式的系数为1+2+…+2,(n﹣1)个2相加,∴第2013个单项式的系数2012个2与1的和=1+2012×2=4025,∵=671,∴第2013个单项式的次数是3,∴第2013个单项式是4025x3.故答案为:4025x3.点评:本题考查的是单项式,根据题意找出规律是解答此题的关键.三.解答题(共6小题)21.(2014秋•镇江校级期末)合并同类项①3a﹣2b﹣5a+2b②(2m+3n﹣5)﹣(2m﹣n﹣5)③2(x2y+3xy2)﹣3(2xy2﹣4x2y)考点:合并同类项;去括号与添括号.分析:(1)根据合并同类项:系数相加字母部分不变,可得答案;(2)根据去括号,可化简整式,根据合并同类项,可得答案;(3)根据去括号,可化简整式,根据合并同类项,可得答案.解答:解:(1)原式=(3a﹣5a)+(﹣2b+2b)=﹣2a;(2)原式=2m+3n﹣5﹣2m+n+5=(2m﹣2m)+(3n+n)+(﹣5+5)=4n;(3)原式=2x2y+6xy2﹣6xy2+12x2y=(2x2y+12x2y)+(6xy2﹣6xy2)=14x2y.点评:本题考查了合并同类项,合并同类项:系数相加字母部分不变,去括号要注意符号.22.(2014秋•海口期末)化简:(1)16x﹣5x+10x(2)7x﹣y+5x﹣3y+3(3)a2+(2a2﹣b2)+b2(4)6a2b+(2a+1)﹣2(3a2b﹣a)考点:整式的加减.专题:计算题.分析:(1)原式合并同类项即可得到结果;(2)原式合并同类项即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果.解答:解:(1)原式=(16﹣5+10)x=21x;(2)原式=7x﹣y+5x﹣3y+3=12x﹣4y+3;(3)原式=a2+2a2﹣b2+b2=3a2;(4)6a2b+2a+1﹣6a2b+2a=4a+1.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.23.(2014秋•江西期末)化简:8n2﹣[4m2﹣2m﹣(2m2﹣5m)].考点:整式的加减.分析:运用整式的加减的法则求解即可.解答:解:8n2﹣[4m2﹣2m﹣(2m2﹣5m)]=8n2﹣(4m2﹣2m﹣2m2+5m)=8n2﹣4m2+2m+2m2﹣5m=8n2﹣2m2﹣3m.点评:本题主要考查了整式的加减,解题的关键是熟记整式的加减运算法则.24.(2014秋•武侯区期末)已知代数式mx3+x3﹣nx+2015x﹣1的值与x的取值无关.(1)求mx的值;(2)若关于y的方程﹣y=2的解是y=mx,求|1﹣2a|的值.考点:多项式;解一元一次方程.分析:(1)根据题意知,x3、x的系数为0,由此求得m、n的值.(2)把(1)中的mx的值代入已知方程求得a的值,然后来求|1﹣2a|的值.解答:解:(1)mx3+x3﹣nx+2015x﹣1=(m+1)x3+(2015﹣n)x﹣1.∵代数式mx3+x3﹣nx+20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论