广东省揭阳市产业园2023年高一数学第一学期期末含解析_第1页
广东省揭阳市产业园2023年高一数学第一学期期末含解析_第2页
广东省揭阳市产业园2023年高一数学第一学期期末含解析_第3页
广东省揭阳市产业园2023年高一数学第一学期期末含解析_第4页
广东省揭阳市产业园2023年高一数学第一学期期末含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省揭阳市产业园2023年高一数学第一学期期末注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数在区间上的简图是()A. B.C. D.2.2022年北京冬奥会将于2022年2月4日星期五开幕,2月20日星期日闭幕.北京冬奥会新增7个小项目,女子单人雪车为其中之一.下表是某国女子单人雪车集训队甲、乙两位队员十轮的比赛成绩,则下列说法正确的是()队员比赛成绩第一轮第二轮第三轮第四轮第五轮第六轮第七轮第八轮第九轮第十轮甲1分51秒741分51秒721分51秒751分51秒801分51秒901分51秒811分51秒721分51秒941分51秒741分51秒71乙1分51秒701分51秒801分51秒831分51秒831分51秒801分51秒841分51秒901分51秒721分51秒901分51秒91A.估计甲队员的比赛成绩的方差小于乙队员的比赛成绩的方差B.估计甲队员的比赛成绩的中位数小于乙队员的比赛成绩的平均数C.估计甲队员的比赛成绩的平均数大于乙队员的比赛成绩的平均数D.估计甲队员的比赛成绩的中位数大于乙队员的比赛成绩的中位数3.某食品的保鲜时间(单位:小时)与储存温度(单位:)满足函数关系(为自然对数的底数,为常数)若该食品在的保鲜时间是384小时,在的保鲜时间是24小时,则该食品在的保险时间是()小时A.6 B.12C.18 D.244.若命题“,使得”为真命题,则实数a的取值范围是()A. B.C. D.5.设,,,则、、的大小关系是A. B.C. D.6.三个数的大小关系是()A. B.C. D.7.下列函数中与函数是同一个函数的是()A. B.C. D.8.已知,则x等于A. B.C. D.9.下列各式正确是A. B.C. D.10.已知指数函数,将函数的图象上的每个点的横坐标不变,纵坐标扩大为原来的倍,得到函数的图象,再将的图象向右平移个单位长度,所得图象恰好与函数的图象重合,则a的值是()A. B.C. D.11.一个空间几何体的三视图如图所示,则该几何体的表面积为A.7B.9C.11D.1312.下列各个关系式中,正确的是()A.={0}B.C.{3,5}≠{5,3}D.{1}{x|x2=x}二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知扇形的弧长为6,圆心角弧度数为2,则其面积为______________.14.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.15.的边的长分别为,且,,,则__________.16.若“”是“”的必要条件,则的取值范围是________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数(A,是常数,,,)在时取得最大值3(1)求的最小正周期;(2)求的解析式;(3)若,求18.如图,已知圆M过点P(10,4),且与直线4x+3y-20=0相切于点A(2,4)(1)求圆M的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且,求直线l的方程;19.已知函数(1)证明:函数在区间上单调递增;(2)已知,试比较三个数a,b,c的大小,并说明理由20.已知集合.(1)若,求;(2)若,求实数m的取值范围.21.某乡镇为了进行美丽乡村建设,规划在长为10千米的河流的一侧建一条观光带,观光带的前一部分为曲线段,设曲线段为函数,(单位:千米)的图象,且曲线段的顶点为;观光带的后一部分为线段,如图所示.(1)求曲线段对应的函数的解析式;(2)若计划在河流和观光带之间新建一个如图所示的矩形绿化带,绿化带由线段构成,其中点在线段上.当长为多少时,绿化带的总长度最长?22.我国是世界上人口最多的国家,1982年十二大,计划生育被确定为基本国策.实行计划生育,严格控制人口增长,坚持少生优生,这是直接关系到人民生活水平的进一步提高,也是造福子孙后代的百年大计.(1)据统计1995年底,我国人口总数约12亿,如果人口的自然年增长率控制在1%,到2020年底我国人口总数大约为多少亿(精确到亿);(2)当前,我国人口发展已经出现转折性变化,2015年10月26日至10月29日召开的党的十八届五中全会决定,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子政策,积极开展应对人口老龄化行动.这是继2013年,十八届三中全会决定启动实施“单独二孩”政策之后的又一次人口政策调整.据统计2015年中国人口实际数量大约14亿,若实行全面两孩政策后,预计人口年增长率实际可达1%,那么需经过多少年我国人口可达16亿.(参考数字:,,,)

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】分别取,代入函数中得到值,对比图象即可利用排除法得到答案.【详解】当时,,排除A、D;当时,,排除C.故选:B.2、B【解析】根据表格中甲乙成绩特征,可去掉成绩里面的分和秒后进行比较.根据中位数、平均数、方差的计算方法求出中位数、平均数、方差比较即可得到答案【详解】根据表格中甲乙成绩特征,可去掉成绩里面的分和秒后进行比较,作茎叶图如图:由图可知,甲的成绩主要集中在70-75之间,乙的成绩主要集中在80-90之间,∴甲的成绩的平均数小于乙的成绩的平均数,故C错误;由图可知甲的成绩中位数为74.5,乙成绩的中位数为83,故甲队员的比赛成绩的中位数小于乙队员的比赛成绩的中位数,故D错误;甲队员比赛成绩平均数为:,乙队员比赛成绩平均数为:,∴甲队员的比赛成绩的中位数小于乙队员的比赛成绩的平均数,故B正确;甲队员的比赛成绩的方差为:=57.41,乙队员的比赛成绩的方差为:=46.61,∴甲队员的比赛成绩的方差大于乙队员的比赛成绩的方差,故A错误故选:B3、A【解析】先阅读题意,再结合指数运算即可得解.【详解】解:由题意有,,则,即,则,即该食品在的保险时间是6小时,故选A.【点睛】本题考查了指数幂的运算,重点考查了解决实际问题的能力,属基础题.4、B【解析】在上有解,利用基本不等式求出的最小值即可.【详解】即在上有解,所以在上有解,由,当且仅当,即时取得等号,故故选:B5、B【解析】详解】,,,故选B点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小6、A【解析】利用指数函数、对数函数、正弦函数的单调性结合中间量法即可求解【详解】解:,,,故选:A7、B【解析】根据同一函数的概念,结合函数的定义域与对应法则,逐项判定,即可求解.【详解】对于A中,函数的定义为,因为函数的定义域为,所以两函数的定义域不同,不是同一函数;对于B中,函数与函数的定义域和对应法则都相同,所以是同一函数;对于C中,函数与函数的对应法则不同,不是同一函数;对于D中,函数的定义域为,因为函数的定义域为,所以两函数的定义域不同,不是同一函数.故选:B.8、A【解析】把已知等式变形,可得,进一步得到,则x值可求【详解】由题意,可知,可得,即,所以,解得故选A【点睛】本题主要考查了有理指数幂与根式的运算,其中解答中熟记有理指数幂和根式的运算性质,合理运算是解答的关键,着重考查了运算与求解能力,属于基础题.9、D【解析】对于,,,故,故错误;根据对数函数的单调性,可知错误故选10、D【解析】根据函数图象变换求出变换后的函数解析式,结合已知条件可得出关于实数的等式,进而可求得实数的值.【详解】由题意可得,再将的图象向右平移个单位长度,得到函数,又因为,所以,,整理可得,因为且,解得.故选:D.11、B【解析】该几何体是一个圆上面挖掉一个半球,S=2π×3+π×12+=9π.12、D【解析】由空集的定义知={0}不正确,A不正确;集合表示有理数集,而不是有理数,所以B不正确;由集合元素的无序性知{3,5}={5,3},所以C不正确;{x|x2=x}={0,1},所以{1}{0,1},所以D正确.故选D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、9【解析】根据扇形的弧长是6,圆心角为2,先求得半径,再代入公式求解.【详解】因为扇形的弧长是6,圆心角为2,所以,所以扇形的面积为,故答案为:9.14、【解析】正方体体积8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π故答案为:12π点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.15、【解析】由正弦定理、余弦定理得答案:16、【解析】根据题意解得:,得出,由此可得出实数的取值范围.【详解】根据题意解得:,由于“”是“”必要条件,则,.因此,实数的取值范围是:.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2);(3)【解析】(1)根据最小正周期公式可直接求出;(2)根据函数图象与性质求出解析式;(3)根据诱导公式以及二倍角公式进行化简即可求值.【详解】解:(1)最小正周期(2)依题意,因为且,因为所以,,(3)由得,即,所以,【点睛】求三角函数的解析式时,由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ,否则需要代入点的坐标,利用一些已知点的坐标代入解析式,再结合函数的性质解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.18、(1)(2)2x-y+5=0或2x-y-15=0.【解析】(1)由题意得到圆心M(6,7),半径,进而得到圆的方程;(2)直线l∥OA,所以直线l的斜率为,根据点线距和垂径定理得到解得m=5或m=-15,进而得到方程.解析:(1)过点A(2,4)且与直线4x+3y-20=0垂直的直线方程为3x-4y+10=0①AP的垂直平分线方程为x=6②由①②联立得圆心M(6,7),半径圆M的方程为(2)因为直线l∥OA,所以直线l的斜率为.设直线l的方程为y=2x+m,即2x-y+m=0则圆心M到直线l的距离因为而所以,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.19、(1)证明见解析(2)【解析】(1)根据函数单调性的定义即可证明;(2)先比较三个数的大小,再利用函数的单调性即可比较a,b,c的大小.【小问1详解】证明:函数,任取,且,则,因为,且,所以,,所以,即,所以函数在区间上单调递增;【小问2详解】解:由(1)可知函数在区间上单调递增,因为,,,所以,所以,即.20、(1)(2)【解析】(1)时,求出集合,由此能求出;(2)由可得,当时,,当时,,由此能求出实数的取值范围【小问1详解】解:时,集合,,【小问2详解】解:,,当时,,解得,当时,,解得,实数的取值范围是21、(1).(2)当OM长为1千米时,绿化带的总长度最长.【解析】(1)由题意首先求得a,b,c的值,然后分段确定函数的解析式即可;(2)设,由题意得到关于t的函数,结合二次函数的性质确定当长为多少时,绿化带的总长度最长即可.【详解】(1)因为曲线段OAB过点O,且最高点为,,解得.所以,当时,,因为后一部分为线段BC,,当时,,综上,.(2)设,则,由,得,所以点,所以,绿化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论