




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省兰州市西北师大附中2023年高一数学第一学期期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.与直线垂直,且在轴上的截距为-2的直线方程为()A. B.C. D.2.已知函数在区间上的值域为,对任意实数都有,则实数的取值范围是()A. B.C. D.3.函数的一条对称轴是()A. B.C. D.4.设,,则()A. B.C. D.5.函数的零点所在区间为A. B.C. D.6.函数f(x)=x-的图象关于()Ay轴对称 B.原点对称C.直线对称 D.直线对称7.幂函数图象经过点,则的值为()A. B.C. D.8.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为A.1 B.C. D.9.下列关系中,正确的是()A. B.C. D.10.已知函数,则下列说法正确的是()A.的最小正周期为 B.的图象关于直线C.的一个零点为 D.在区间的最小值为1二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调增区间为________12.设函数的图象关于y轴对称,且其定义域为,则函数在上的值域为________.13.已知在区间上单调递减,则实数的取值范围是____________.14.已知幂函数图像过点,则该幂函数的解析式是______________15.函数的部分图象如图所示,则___________.16.如果满足对任意实数,都有成立,那么a的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若,求a的值;(2)判断函数的奇偶性,并证明你的结论;(3)若对于恒成立,求实数m的范围18.已知正项数列的前项和为,且和满足:(1)求的通项公式;(2)设,求的前项和;(3)在(2)的条件下,对任意,都成立,求整数的最大值19.已知函数是定义在R上的奇函数,当时,.(1)求函数在上的解析式;(2)求不等式解集.20.如图在三棱锥中,分别为棱的中点,已知.求证:(1)直线平面;(2)平面平面.21.设全集,集合,(1)当时,求;(2)若,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先求出直线的斜率,再利用直线的点斜式方程求解.【详解】由题得所求直线的斜率为,∴所求直线方程为,整理为故选:A【点睛】方法点睛:求直线的方程,常用的方法:待定系数法,先定式(从直线的五种形式中选择一种作为直线的方程),后定量(求出直线方程中的待定系数).2、D【解析】根据关于对称,讨论与的关系,结合其区间单调性及对应值域求的范围.【详解】由题设,,易知:关于对称,又恒成立,当时,,则,可得;当时,,则,可得;当,即时,,则,即,可得;当,即时,,则,即,可得;综上,.故选:D.【点睛】关键点点睛:利用分段函数的性质,讨论其对称轴与给定区间的位置关系,结合对应值域及求参数范围.3、B【解析】由余弦函数的对称轴为,应用整体代入法求得对称轴为,即可判断各项的对称轴方程是否正确.【详解】由余弦函数性质,有,即,∴当时,有.故选:B4、A【解析】由对数函数的图象和性质知,,则.又因为,根据已知可算出其取值范围,进而得到答案.【详解】解:因为,,所以,又+,所以,所以.故选:A.5、C【解析】要判断函数的零点位置,我们可以根据零点存在定理,依次判断区间的两个端点对应的函数值,然后根据连续函数在区间上零点,则与异号进行判断【详解】,,故函数的零点必落在区间故选C【点睛】本题考查的知识点是函数的零点,解答的关键是零点存在定理:即连续函数在区间上与异号,则函数在区间上有零点6、B【解析】函数f(x)=x-则f(-x)=-x+=-f(x),由奇函数的定义即可得出结论.【详解】函数f(x)=x-则f(-x)=-x+=-f(x),所以函数f(x)奇函数,所以图象关于原点对称,故选B.【点睛】本题考查了函数的对称性,根据函数解析式特点得出f(-x)=-f(x)即可得出函数为奇函数,属于基础题.7、D【解析】设,由点幂函数上求出参数n,即可得函数解析式,进而求.【详解】设,又在图象上,则,可得,所以,则.故选:D8、D【解析】由三视图可知:此立体图形是一个底面为等腰直角三角形,一条棱垂直于底面的三棱锥;所以其体积为.故选D.考点:三视图和立体图形的转化;三棱锥的体积.9、C【解析】根据自然数集、正整数集、整数集以及有理数集的含义判断数与集合的关系.【详解】对于A,,所以A错误;对于B,不是整数,所以,所以B错误;对于C,,所以C正确;对于D,因为不含任何元素,则,所以D错误.故选:C.10、D【解析】根据余弦函数的图象与性质判断其周期、对称轴、零点、最值即可.【详解】函数,周期为,故A错误;函数图像的对称轴为,,,不是对称轴,故B错误;函数的零点为,,,所以不是零点,故C错误;时,,所以,即,所以,故D正确.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】结合定义域由复合函数的单调性可解得结果.【详解】由得定义域为,令,则在单调递减,又在单调递减,所以的单调递增区间是.故答案为:.12、【解析】∵函数的图象关于y轴对称,且其定义域为∴,即,且为偶函数∴,即∴∴函数在上单调递增∴,∴函数在上的值域为故答案为点睛:此题主要考查函数二次函数图象对称的性质以及二次函数的值域的求法,求解的关键是熟练掌握二次函数的性质,本题理解对称性很关键13、【解析】根据复合函数单调性的判断方法,结合对数函数的定义域,即可求得的取值范围.【详解】在区间上单调递减由对数部分为单调递减,且整个函数单调递减可知在上单调递增,且满足所以,解不等式组可得即满足条件的取值范围为故答案为:【点睛】本题考查了复合函数单调性的应用,二次函数的单调性,对数函数的性质,属于中档题.14、【解析】设出幂函数的函数表达,然后代点计算即可.【详解】设,因为,所以,所以函数的解析式是故答案为:.15、##【解析】函数的图象与性质,求出、与的值,再利用函数的周期性即可求出答案.【详解】解:由图象知,,∴,又由图象可得:,可求得,∴,∴,∴故答案为:.16、【解析】根据题中条件先确定函数的单调性,再根据函数的单调性求解参数的取值范围.【详解】由对任意实数都成立可知,函数为实数集上的单调减函数.所以解得.故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)奇函数,证明见解析(3)【解析】(1)代入,得到,利用对数的运算即可求解;(2)先判断奇偶性,然后分析定义域并计算的数量关系,由此完成证明;(3)将已知转化为,求出在的最小值,即可得解.【小问1详解】,,即,解得,所以a的值为【小问2详解】为奇函数,证明如下:由,解得:或,所以定义域为关于原点对称,又,所以为奇函数;【小问3详解】因为,又外部函数为增函数,内部函数在上为增函数,由复合函数的单调性知函数在上为增函数,所以,又对于恒成立,所以,所以,所以实数的范围是18、(1);(2);(3)7.【解析】(1)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2(n≥2),由此得到(an+an-1)•(an-an-1-2)=0.从而能求出{an}的通项公式;(2)由(1)知,由此利用裂项求和法能求出Tn(3)由(2)知从而得到.由此能求出任意n∈N*,Tn都成立的整数m的最大值【详解】(1)∵4Sn=(an+1)2,①∴4Sn-1=(an-1+1)2(n≥2),②①-②得4(Sn-Sn-1)=(an+1)2-(an-1+1)2∴4an=(an+1)2-(an-1+1)2化简得(an+an-1)•(an-an-1-2)=0∵an>0,∴an-an-1=2(n≥2)∴{an}是以1为首项,2为公差等差数列∴an=1+(n-1)•2=2n-1(2)∴(3)由(2)知,∴数列{Tn}是递增数列∴∴∴整数m的最大值是7【点睛】本题考查数列的通项公式的求法,考查裂项相消法求数列的前n项和,解题时要认真审题,仔细解答,注意等价转化思想的合理运用19、(1)(2)【解析】(1)根据奇函数的知识求得函数在上的解析式.(2)结合函数的单调性、奇偶性求得不等式的解集.小问1详解】当时,,.所以函数在上的解析式为.【小问2详解】当时,为增函数,所以在上为增函数.由得,所以,所以,所以不等式的解集为.20、(1)证明见解析;(2)证明见解析【解析】(1)本题证明线面平行,根据其判定定理,需要在平面内找到一条与平行的直线,由于题中中点较多,容易看出,然后要交待在平面外,在平面内,即可证得结论;(2)要证两平面垂直,一般要证明一个平面内有一条直线与另一个平面垂直,由(1)可得,因此考虑能否证明与平面内的另一条与相交的直线垂直,由已知三条线段的长度,可用勾股定理证明,因此要找的两条相交直线就是,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 连锁超市转让协议书
- 车位租赁合同协议书
- 顺丰司机合同协议书
- 金融委托贷款协议书
- 造价咨询股东协议书
- Brand KPIs for second-hand apparel online shops IN LOVE AGAIN in Germany-外文版培训课件(2025.2)
- 长期电力交易协议书
- 餐具货物配送协议书
- 闲置资金托管协议书
- 餐具专版定制协议书
- 工业微波设备加热均匀性标准
- 制定创新激励机制与奖励政策计划
- 2019泸州中考化学试题及答案
- 五人制足球规则(教学)
- 学校食堂“三同三公开”制度实施方案
- 2025年福建福州地铁集团有限公司招聘笔试参考题库含答案解析
- 人工智能在新闻媒体领域的应用
- 【MOOC】儒家伦理-南京大学 中国大学慕课MOOC答案
- 银保部三年规划
- 2024治安调解协议书样式
- 零工市场(驿站)运营管理 投标方案(技术方案)
评论
0/150
提交评论