版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建师大附中2023年数学高一上期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数,则的零点所在区间为A. B.C. D.2.下列几何体中是棱柱的有()A.1个 B.2个C.3个 D.4个3.已知点P(cosα,sinα),Q(cosβ,sinβ),则的最大值是()A. B.2C.4 D.4.已知是R上的奇函数,且对,有,当时,,则()A.40 B.C. D.5.如图,在中,是的中点,若,则实数的值是A. B.1C. D.6.命题“,”的否定为()A., B.,C, D.,7.已知是定义域为的偶函数,当时,,则的解集为()A. B.C. D.8.幂函数的图象过点,则函数的值域是()A. B.C. D.9.已知函数,若图象过点,则的值为()A. B.2C. D.10.下列不等式成立的是()A.log31C.log23<11.若a2+b2=2c2(c≠0),则直线ax+by+c=0被圆x2+y2=1所截得的弦长为A. B.1C. D.12.设集合A={3,4,5},B={3,6},P={x|xA},Q={x|xB},则PQ=A.{3}B.{3,4,5,6}C.{{3}}D.{{3},}二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知关于不等式的解集为,则的最小值是___________.14.______.15.若函数的定义域为[-2,2],则函数的定义域为______16.已知是内一点,,记的面积为,的面积为,则__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.设两个非零向量与不共线,(1)若,,,求证:A,B,D三点共线;(2)试确定实数k,使和共线18.已知函数,(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)如果,求x的取值范围.19.已知幂函数的图象经过点.(1)求实数a的值;(2)用定义法证明在区间上是减函数.20.求满足下列条件的直线方程.(1)经过点A(-1,-3),且斜率等于直线3x+8y-1=0斜率的2倍;(2)过点M(0,4),且与两坐标轴围成三角形的周长为12.21.已知,(1)当且x是第四象限角时,求的值;(2)若关于x的方程有实数根,求a的最小值22.已知函数的图象过点与点.(1)求,的值;(2)若,且,满足条件的的值.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】根据函数的零点判定定理可求【详解】连续函数在上单调递增,,,的零点所在的区间为,故选B【点睛】本题主要考查了函数零点存在定理的应用,熟记定理是关键,属于基础试题2、C【解析】根据棱柱的定义进行判断即可【详解】棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱,观察图形满足棱柱概念的几何体有:①③⑤,共三个故选:C【点睛】本题主要考查棱柱的概念,属于简单题.3、B【解析】,则,则的最大值是2,故选B.4、C【解析】根据已知和对数运算得,,再由指数运算和对数运算法则可得选项.【详解】因为,,故,.∵,故.故选:C【点睛】关键点点睛:解决本题类型的问题的关键在于:1、由已知得出抽象函数的周期;2、根据函数的周期和对数运算法则将自变量转化到已知范围中,可求得函数值.5、C【解析】以作为基底表示出,利用平面向量基本定理,即可求出【详解】∵分别是的中点,∴.又,∴.故选C.【点睛】本题主要考查平面向量基本定理以及向量的线性运算,意在考查学生的逻辑推理能力6、B【解析】根据特称命题的否定为全称命题可得.【详解】根据特称命题的否定为全称命题,可得命题“,”的否定为“,”故选:B.7、C【解析】首先画出函数的图象,并当时,,由图象求不等式的解集.【详解】由题意画出函数的图象,当时,,解得,是偶函数,时,,由图象可知或,解得:或,所以不等式的解集是.故选:C【点睛】本题考查函数图象的应用,利用函数图象解不等式,意在考查数形结合分析问题和解决问题的能力,属于几次题型.8、C【解析】设,带点计算可得,得到,令转化为二次函数的值域求解即可.【详解】设,代入点得,则,令,函数的值域是.故选:C.9、B【解析】分析】将代入求得,进而可得的值.【详解】因为函数的图象过点,所以,则,所以,,故选:B.10、A【解析】由对数的单调性直接比较大小.【详解】因为log31=log2=log24<故选:A.11、D【解析】因为,所以设弦长为,则,即.考点:本小题主要考查直线与圆的位置关系——相交.12、D【解析】集合P={x|x⊆A}表示集合A的子集构成的集合,故P={∅,{3},{4},{5},{3,4},{3,5},{4,5},{3,4,5}},同样Q={∅,{3},{6},{3,6}}.∴P∩Q={{3},Φ};故选D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由题知,进而根据基本不等式求解即可.【详解】解:因为关于的不等式的解集为,所以是方程的实数根,所以,因为,所以,当且仅当,即时等号成立,所以的最小值是故答案为:14、2【解析】利用两角和的正切公式进行化简求值.【详解】由于,所以,即,所以故答案为:【点睛】本小题主要考查两角和的正切公式,属于中档题.15、【解析】∵函数的定义域为[-2,2]∴,∴∴函数的定义域为16、【解析】设BC中点为M,则,所以P到BC的距离为点A到BC距离的,故三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)证明见解析;(2).【解析】(1)转化为证明向量,共线,即可证明三点共线;(2)由共线定理可知,存在实数λ,使,利用向量相等,即可求解值.【详解】(1)证明:,,,,共线,又∵它们有公共点B,∴A,B,D三点共线(2)和共线,∴存在实数λ,使,即,.,是两个不共线的非零向量,,.18、(1);(2)见解析;(3)【解析】(1)根据真数大于零列不等式,解得结果,(2)根据奇函数定义判断并证明结果,(3)根据底与1的大小,结合对数函数单调性分类化简不等式,解得结果.【详解】(1)由,得-3<x<3,∴函数的定义域为(-3,3)(2)由(1)知,函数的定义域关于原点对称,且h(-x)+h(x)=0,h(-x)=-h(x),∴函数奇函数(3),所以,解得,所以.19、(1);(2)证明见解析.【解析】(1)将点代入函数解析式运算即可得解;(2)利用函数单调性的定义,任取,且,通过作差证明即可得证.【详解】(1)的图象经过点,,即,解得,(2)证明:由(1)得任取,且,则,,,且,,即,在区间内是减函数.20、(1)3x+4y+15=0(2)4x+3y-12=0或4x-3y+12=0.【解析】根据直线经过点A,再根据斜率等于直线3x+8y-1=0斜率2倍求出斜率的值,然后根据直线方程的点斜式写出直线的方程,化为一般式;直线经过点M(0,4),说明直线在y轴的截距为4,可设直线在x轴的截距为a,利用三角形周长为12列方程求出a,利用直线方程的截距式写出直线的方程,然后化为一般方程.试题解析:(1)因为3x+8y-1=0可化为y=-x+,所以直线3x+8y-1=0的斜率为-,则所求直线的斜率k=2×(-)=-又直线经过点(-1,-3),因此所求直线的方程为y+3=-(x+1),即3x+4y+15=0.(2)设直线与x轴的交点为(a,0),因为点M(0,4)在y轴上,所以由题意有4++|a|=12,解得a=±3,所以所求直线的方程为或,即4x+3y-12=0或4x-3y+12=0.【点睛】当直线经过点A,并给出斜率的条件时,根据斜率与已知直线的斜率关系求出斜率值,然后根据直线方程的点斜式写出直线的方程,化为一般式;当涉及到直线与梁坐标轴所围成的三角形的周长和面积时,一般利用直线方程的截距式解决问题较方便一些,但使用点斜式也好,截距式也好,它们都有不足之处,点斜式只能表达斜率存在的直线,截距式只能表达截距存在而且不为零的直线,因此使用时要注意补充答案.21、(1)(2)1【解析】(1)根据立方差公式可知,要计算及的值就可以求解问题;(2)将方程转化为,再分类讨论即可求解.【小问1详解】,即,则,即,所以因为x是第四像限角,所以,所以,所以【小问2详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 管道施工合同范本
- 2024年度销售代理合同:服装厂与销售商的合作协议2篇
- 2024年度咨询服务合同详细描述3篇
- 进出口贸易居间合同范本
- 2024广告代理合同2篇
- 连带责任保证合同模板
- 可行性研究报告合同范本
- 农村自建房包工不包料施工合同完整版
- 贸易居间合同范本
- 美容院店面品牌授权合同2024
- (完整word版)项目比价表
- 抽水试验线型及经验公式
- 行政诉讼被告代理词
- 二年级上册音乐课件-第7课《小花雀》|花城版 (共12张PPT)
- 2022年医院科教科工作计划
- 幼儿园警察职业介绍(课堂PPT)
- 初中难度几何100题
- 消防维保公司管理制度消防维保管理制度范本.doc
- 经尿道前列腺电切术的手术护理-经尿道前列腺电切术护理问题
- 防爆柜使用说明书课件
- 轴承压装力计算软件
评论
0/150
提交评论