版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省临泉二中2023-2024学年高一上数学期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数,,则函数的图象大致是()A. B.C. D.2.已知函数,若函数有三个零点,则实数的取值范围是()A. B.C. D.3.已知直线及三个互不重合的平面,,,下列结论错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,,则4.已知函数,则的概率为A. B.C. D.5.下列函数中,同时满足:①在上是增函数,②为奇函数,③最小正周期为的函数是()A. B.C. D.6.如图程序框图的算法源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的值分别为30,12,0,经过运算输出,则的值为()A.6 B.C.9 D.7.已知集合,则()A. B.C. D.8.已知函数的值域为R,则实数的取值范围是()A. B.C. D.9.设非零向量、、满足,,则向量、的夹角()A. B.C. D.10.下列函数中,图象关于坐标原点对称的是()A.y=x B.C.y=x D.11.如果全集,,则A. B.C. D.12.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程看作时间的函数,其图象可能是A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知,则______________14.某扇形的圆心角为2弧度,周长为4cm,则该扇形面积为_____cm215.不论为何实数,直线恒过定点__________.16.已知函数,则_________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.设,已知集合,(1)当时,求;(2)若,且,求实数的取值范围18.已知,且.(1)求;(2)若,,求的值.19.化简求值:(1)已知,求的值;(2)20.已知函数(且)的图象恒过点A,且点A在函数的图象上.(1)求的最小值;(2)若,当时,求的值域.21.已知函数是定义在R上的奇函数,且当时,.(1)求函数的解析式;(2)若函数在区间上单调递增,求实数的取值范围.22.已知函数,(1)若,求在区间上的最小值;(2)若在区间上有最大值3,求实数的值.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】先判断出为偶函数,排除A;又,排除D;利用单调性判断B、C.【详解】因为函数,,所以函数.所以定义域为R.因为,所以为偶函数.排除A;又,排除D;因为在为增函数,在为增函数,所以在为增函数.因为为偶函数,图像关于y轴对称,所以在为减函数.故B错误,C正确.故选:C2、A【解析】函数有三个零点,转化为函数的图象与直线有三个不同的交点,画出的图象,结合图象求解即可【详解】因为函数有三个零点,所以函数的图象与直线有三个不同的交点,函数的图象如图所示,由图可知,,故选:A3、B【解析】对A,可根据面面平行的性质判断;对B,平面与不一定垂直,可能相交或平行;对C,可根据面面平行的性质判断;对D,可通过在平面,中作直线,推理判断.【详解】解:对于选项A:根据面面平行的性质可知,若,,则成立,故选项A正确,对于选项B:垂直于同一平面的两个平面,不一定垂直,可能相交或平行,故选项B错误,对于选项C:根据面面平行的性质可知,若,,则成立,故选项C正确,对于选项D:若,,,设,,在平面中作一条直线,则,在平面中作一条直线,则,,,又,,,故选项D正确,故选:B.4、B【解析】由对数的运算法则可得:,当时,脱去符号可得:,解得:,此时;当时,脱去符号可得:,解得:,此时;据此可得:概率空间中的7个数中,大于1的5个数满足题意,由古典概型公式可得,满足题意的概率值:.本题选择B选项.5、D【解析】根据三角函数的图像和性质逐项分析即可求解.【详解】A中的最小正周期为,不满足;B中是偶函数,不满足;C中的最小正周期为,不满足;D中是奇函数﹐且周期,令,∴,∴函数的递增区间为,,∴函数在上是增函数,故D正确.故选:D.6、D【解析】利用程序框图得出,再利用对数的运算性质即可求解.【详解】当时,,,当时,,,当时,,,当时,,所以.故选:D【点睛】本题考查了循环结构嵌套条件结构以及对数的运算,解题的关键是根据程序框图求出输出的结果,属于基础题.7、D【解析】求出集合A,再求A与B的交集即可.【详解】∵,∴.故选:D.8、C【解析】分段函数值域为R,在x=1左侧值域和右侧值域并集为R.【详解】当,∴当时,,∵的值域为R,∴当时,值域需包含,∴,解得,故选:C.9、B【解析】根据已知条件,应用向量数量积的运算律可得,由得,即可求出向量、的夹角.【详解】由题意,,即,∵,∴,则,又,∴.故选:B10、B【解析】根据图象关于坐标原点对称的函数是奇函数,结合奇函数的性质进行判断即可.【详解】因为图象关于坐标原点对称的函数是奇函数,所以有:A:函数y=xB:设f(x)=x3,因为C:设g(x)=x,因为g(-x)=D:因为当x=0时,y=1,所以该函数的图象不过原点,因此不是奇函数,不符合题意,故选:B11、C【解析】首先确定集合U,然后求解补集即可.【详解】由题意可得:,结合补集的定义可知.本题选择C选项.【点睛】本题主要考查集合的表示方法,补集的定义等知识,意在考查学生的转化能力和计算求解能力.12、A【解析】汽车启动加速过程,随时间增加路程增加的越来越快,汉使图像是凹形,然后匀速运动,路程是均匀增加即函数图像是直线,最后减速并停止,其路程仍在增加,只是增加的越来越慢即函数图像是凸形.故选A考点:函数图像的特征二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、100【解析】分析得出得解.【详解】∴故答案为:100【点睛】由函数解析式得到是定值是解题关键.14、1【解析】设该扇形的半径为,根据题意,因为扇形的圆心角为弧度,周长为,则有,,故答案为.15、【解析】直线整理可得.令,解得,即直线恒过定点点睛:直线恒过定点问题,一般就是将参数提出来,使得其系数和其他项均为零,即可得定点.16、1【解析】根据分段函数的定义即可求解.【详解】解:因为函数,所以,所以,故答案为:1.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)或;(2).【解析】(1)根据并集和补集的概念即可求出结果;(2)由题意可得,解不等式组即可求出结果.【小问1详解】当时,,且,则,所以或;【小问2详解】因为,且,所以需满足,解得,所以实数的取值范围为.18、(1)(2)【解析】(1)根据三角函数相关公式化简求解;(2)根据三角恒等变换化简求解.【小问1详解】解:,由,得,解得又,所以.【小问2详解】解:若,,则,因为,又,所以,所以,所以19、(1)(2)【解析】(1)先用诱导公式化简,再用同角三角函数的平方关系求解;(2)先用诱导公式化简,再代入特殊三角函数值计算即可.【小问1详解】;【小问2详解】20、(1)4;(2).【解析】(1)根据对数函数恒过定点(1,0)求出m和n的关系:,则利用转化为基本不等式求最小值;(2)利用换元法令,将问题转化为二次函数求值域问题即可.【小问1详解】∵,∴函数的图象恒过点.∵在函数图象上,∴.∵,∴,,∴,,∴,当且仅当时等号成立,∴的最小值为4.【小问2详解】当时,,∵在上单调递增,∴当时,,令,则,,在上单调递增,∴当时,;当时,.故所求函数的值域为.21、(1);(2).【解析】(1)设,计算,再根据奇函数的性质,得,,即可得函数在R上的解析式;(2)作出函数的图像,若在区间上单调递增,结合函数图像,列关于的不等式组求解.详解】(1)设,则,所以又为奇函数,所以,于是时,,所以函数的解析式为(2)作出函数的图像如图所示,要使在上单调递增,结合的图象知,所以,所以的取值范围是.22、(1);(2)或.【解析】(1)先求函数对称轴,再根据对称轴与定义区间位置关系确定最小值取法(2)根据对称轴与定义区间位置关系三种情况分类讨论最大值取法,再根据最大值为3,解方程求出实数的值试题解析:解:(1)若,则函数图像开口向下,对称轴为,所以函数在区间上是单调递增的,在区间上是单调递减的,有又,(2)对称轴为当时,函数在在区间上是单调递减的,则,即;当时,函数在区间上是单调递增的,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度物业管理服务合同有附属设施2篇
- 2024年度汽车抵押贷款居间服务合同范本
- 2024年度互联网金融:投资理财与风险控制合同
- 2024年度彩钢瓦施工质量控制系统开发合同
- 医院手术室7s管理
- 2024年度沧州图书馆租赁合同
- 2024年度汽车抵押贷款合同2篇
- 2024年度施工合同的建设标准要求
- 非经营性固定资产管理制度-模板范文
- 2024年度电商一件代发合同-违约责任与争议解决
- 主要动物疫病检疫-共患病检疫(动物防疫与检疫技术)
- 胸痛中心培训PPT医学课件
- 儿科诊疗常规及儿科诊疗指南
- 教师个人意识形态方面存在的问题
- 体位引流课件
- 两江三镇说武汉知到章节答案智慧树2023年武汉纺织大学
- Agenda日程范本完整版
- 媒介伦理及规范案例教学演示文稿
- 混凝土有限公司安全管理工作责任追究制度
- 人教版三年级数学上册“倍的认识”作业设计
- 大数据可视化知到章节答案智慧树2023年浙江大学
评论
0/150
提交评论