安徽省亳州市2024届高一上数学期末统考模拟试题含解析_第1页
安徽省亳州市2024届高一上数学期末统考模拟试题含解析_第2页
安徽省亳州市2024届高一上数学期末统考模拟试题含解析_第3页
安徽省亳州市2024届高一上数学期末统考模拟试题含解析_第4页
安徽省亳州市2024届高一上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省亳州市2024届高一上数学期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.设p:关于x的方程有解;q:函数在区间上恒为正值,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.在下列命题中,不是公理的是A.平行于同一条直线的两条直线互相平行B.如果一条直线上的两点在一个平面内,那么这条直线在此平面内C.空间中,如果两个角的两边分别对应平行,那么这两角相等或互补D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线3.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数概率是A. B.C. D.4.已知正实数x,y,z,满足,则()A. B.C. D.5.已知函数在区间上单调递减,则实数的取值范围为()A. B.C. D.6.设是定义在R上的奇函数,当时,(b为常数),则的值为()A.﹣6 B.﹣4C.4 D.67.若是的一个内角,且,则的值为A. B.C. D.8.某地一年之内12个月的降水量从小到大分别为:46,48,51,53,53,56,56,56,58,64,66,71,则该地区的月降水量20%分位数和75%分位数为()A.51,58 B.51,61C.52,58 D.52,619.设a>0,b>0,化简的结果是()A. B.C. D.-3a10.已知,,且,则的最小值为()A.2 B.3C.4 D.811.在平面直角坐标系中,角的顶点与原点重合,角的始边与轴非负半轴重合,角的终边经过点,则()A B.C. D.12.已知命题p:x为自然数,命题q:x为整数,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知角的顶点为坐标原点,始边为x轴非负半轴,若是角终边上的一点,则______14.已知A(3,0),B(0,4),直线AB上一动点P(x,y),则xy的最大值是___.15.化简:________.16.命题“”的否定是________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数,(1)求最小正周期;(2)求的单调递增区间;(3)当时,求的最大值和最小值18.在①函数的图象向右平移个单位长度得到的图像,图像关于对称;②函数这两个条件中任选一个,补充在下而问题中,并解答.已知______,函数的图象相邻两条对称轴之间的距离为.(1)若在上的值域为,求a的取值范围;(2)求函数在上的单调递增区间.19.(1)求值:;(2)已知,,试用表示.20.已知函数是偶函数(其中a,b是常数),且它的值域为(1)求的解析式;(2)若函数是定义在R上的奇函数,且时,,而函数满足对任意的,有恒成立,求m的取值范围21.已知二次函数.(1)若为偶函数,求在上的值域:(2)若时,的图象恒在直线的上方,求实数a的取值范围.22.如图,在几何体中,,均与底面垂直,且为直角梯形,,,,,分别为线段,的中点,为线段上任意一点.(1)证明:平面.(2)若,证明:平面平面.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】先化简p,q,再利用充分条件和必要条件的定义判断.【详解】因为方程有解,即方程有解,令,则,即;因为函数在区间上恒为正值,所以在区间上恒成立,即在区间上恒成立,解得,所以p是q的必要不充分条件,故选:B2、C【解析】A,B,D分别为公理4,公理1,公理2,C为角平行性质,选C3、A【解析】从1,2,3,4这4个数中,不放回地任意取两个数,共有(12),(1,3),(1,4),(2,1),(2,3),(2,4)(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种其中满足条件两个数都是奇数的有(1,3),(3,1)两种情况故从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率.故选A.4、A【解析】根据指数函数和对数函数的图像比较大小即可.【详解】令,则,,,由图可知.5、A【解析】先由题意,求出函数的单调递减区间,再由题中条件,列出不等式组求解,即可得出结果.【详解】由题意,令,则,即函数的单调递减区间为,因为函数在区间上单调递减,所以,解得,所以,.故选:A.【点睛】关键点点睛:本题的关键是用不等式法求函数的单调递减区间时,应该令,且该函数的周期应为,则.6、B【解析】根据函数是奇函数,可得,求得,结合函数的解析式即可得出答案.【详解】解:因为是定义在R上的奇函数,当时,,,解得所以.故选:B.7、D【解析】是的一个内角,,又,所以有,故本题的正确选项为D.考点:三角函数诱导公式的运用.8、B【解析】先把每月的降水量从小到大排列,再根据分位数的定义求解.【详解】把每月的降水量从小到大排列为:46,48,51,53,53,56,56,56,58,64,66,71,,所以该地区月降水量的分位数为;所以该地区的月降水量的分位数为.故选:B9、D【解析】由分数指数幂的运算性质可得结果.【详解】因为,,所以.故选:D.10、C【解析】根据条件,变形后,利用均值不等式求最值.【详解】因为,所以.因为,,所以,当且仅当,时,等号成立,故的最小值为4.故选:C11、A【解析】根据任意角的三角函数定义即可求解.【详解】解:由题意知:角的终边经过点,故.故选:A.12、A【解析】根据两个命题中的取值范围,分析是否能得到pq和qp【详解】若x为自然数,则它必为整数,即p⇒q但x为整数不一定是自然数,如x=-2,即qp故p是q的充分不必要条件故选:A.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据余弦函数的定义可得答案.【详解】解:∵是角终边上的一点,∴故答案为:.14、3【解析】直线AB的方程为+=1,又∵+≥2,即2≤1,当x>0,y>0时,当且仅当=,即x=,y=2时取等号,∴xy≤3,则xy的最大值是3.15、-1【解析】原式)(.故答案为【点睛】本题的关键点有:先切化弦,再通分;利用辅助角公式化简;同角互化.16、【解析】由否定的定义写出即可.【详解】命题“”的否定是“”故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2),(3)最大值为,最小值为【解析】(1)由周期公式直接可得;(2)利用正弦函数的单调区间解不等式可得;(3)先根据x的范围求出的范围,然后由正弦函数的性质可得.【小问1详解】的最小正周期【小问2详解】由,,得,.所以函数的单调递增区间为,【小问3详解】∵,∴当,即时,当,即时,.18、(1);(2),,.【解析】先选条件①或条件②,结合函数的性质及图像变换,求得函数,(1)由,得到,根据由正弦函数图像,即可求解;(2)根据函数正弦函数的形式,求得,,进而得出函数的单调递增区间.【详解】方案一:选条件①由函数的图象相邻两条对称轴之间的距离为,可得,解得,所以,又由函数的图象向右平移个单位长度得到,又函数图象关于对称,可得,,因为,所以,所以.(1)由,可得,因为函数在上的值域为,根据由正弦函数图像,可得,解得,所以的取值范围为.(2)由,,可得,,当时,可得;当时,可得;当时,可得,所以函数在上的单调递增区间为,,.方案二:选条件②:由,因为函数的图象相邻两条对称轴之间的距离为,可得,所以,可得,又由函数的图象向右平移个单位长度得到,又函数图象关于对称,可得,,因为,所以,所以.(1)由,可得,因为函数在上的值域为,根据由正弦函数图像,可得,解得,所以的取值范围为.(2)由,,可得,,当时,可得;当时,可得;当时,可得,所以函数在上的单调递增区间为,,.【点睛】解答三角函数图象与性质的综合问题的关键是首先将已知条件化为或的形式,然后再根据三角函数的基本性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质.19、(1)(2)【解析】(1)先将小数转化为分数并约简,然后各式化成指数幂的形式,再利用指数运算法则即可化简求值.(2)先利用对数的换底公式,以及相关的运算公式将转化为以表示的式子,然后换成m,n即可.【详解】解:(1)原式(2)原式【点睛】主要考查指数幂运算公式以及对数的运算公式的应用,属于基础题.20、(1)(2)【解析】(1)由偶函数的定义结合题意可求出,再由函数的值域为可求出,从而可求出函数解析式,(2)由题意求出的解析式,判断出当时,,从而将问题转化为满足对任意的恒成立,设,则对恒成立,然后利用二次函数的性质求解【小问1详解】由题∵是偶函数,∴,∴∴或,又∵的值域为,∴,∴,∴或,∴;【小问2详解】若函数是定义在R上的奇函数,且时,,由(1)知,∴时,;时,;当时,,显然时,,若,则又满足对任意的,有恒成立,∴对任意的恒成立,即满足对任意的恒成立,即,设,则对恒成立,设,∵函数的图像开口向上,∴只需,∴,∴所求m的取值范围是.21、(1);(2)【解析】(1)函数为二次函数,其对称轴为.由f(x)为偶函数,可得a=2,再利用二次函数的单调性求出函数f(x)在[−1,2]上的值域;(2)根据题意可得f(x)>ax恒成立,转化为恒成立,将参数分分离出来,再利用均值不等式判断的范围即可【小问1详解】根据题意,函数为二次函数,其对称轴为.若为偶函数,则,解得,则在上先减后增,当时,函数取得最小值9,当时,函数取得最大值13,即函数在上的值域为;【小问2详解】由题意知时,恒成立,即.所以恒成立,因为,所以,当且仅当即时等号成立.所以,解得,所以a的取值范围是.22、(1)详见解析;(2)详见解析.【解析】(1)由题可得,进而可得平面,因为,,所以四边形为平行四边形,即,从而得出平面,平面平面,进而证得平面(2)由题可先证明四边形为正方形,连接,则,再证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论