版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省芜湖市安徽师大附中2024届数学高一上期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是定义在上的偶函数,当时,,则A. B.C. D.2.若sinα=-,且α为第三象限的角,则cosα的值等于()A. B.C. D.3.函数y=的定义域是()A. B.C. D.4.函数的最大值为A.2 B.C. D.45.已知函数的图象与函数的图象关于直线对称,函数是奇函数,且当时,,则()A. B.6C. D.76.已知向量,,若,则()A. B.C.2 D.37.已知命题:,,那么命题为()A., B.,C., D.,8.已知函数在上是增函数,则实数的取值范围为()A. B.C. D.9.在R上定义运算⊙:A⊙B=A(1-B),若不等式(x-a)⊙(x+a)<1对任意的实数x∈R恒成立,则实数a的取值范围为()A.-1<a<1 B.0<a<2C.-<a< D.-<a<10.设,则的值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知且,且,函数的图象过定点A,A在函数的图象上,且函数的反函数过点,则______.12.数据的第50百分位数是__________.13.在中,角、、所对的边为、、,若,,,则角________14.若,,,则的最小值为______.15.点是一次函数图象上一动点,则的最小值是______16.已知圆心为,且被直线截得的弦长为,则圆的方程为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在上的增函数,且,求x的取值范围.18.已知,函数(1)求的定义域;(2)当时,求不等式的解集19.已知的内角所对的边分别为,(1)求的值;(2)若,求面积20.已知向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π](1)若与共线,求x的值;(2)若⊥,求x的值;(3)记f(x)=•,当f(x)取得最小值时,求x的值21.已知角α的终边经过点,且为第二象限角(1)求、、的值;(2)若,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由函数是定义在上的偶函数,借助奇偶性,将问题转化到已知区间上,再求函数值【详解】因为是定义在上的偶函数,且当时,,所以,选择D【点睛】已知函数的奇偶性问题,常根据函数的奇偶性,将问题进行转化,转化到条件给出的范围再进行求解2、B【解析】先根据为第三象限角,可知,再根据平方关系,利用,可求的值【详解】解:由题意,为第三象限角,故选.【点睛】本题以三角函数为载体,考查同角三角函数的平方关系,解题时应注意判断三角函数的符号,属于基础题.3、A【解析】根据偶次方根的被开方数为非负数,对数的真数大于零列不等式,由此求得函数的定义域.【详解】依题意,所以的定义域为.故选:A4、B【解析】根据两角和的正弦公式得到函数的解析式,结合函数的性质得到结果.【详解】函数根据两角和的正弦公式得到,因为x根据正弦函数的性质得到最大值为.故答案为B.【点睛】这个题目考查了三角函数的两角和的正弦公式的应用,以及函数的图像的性质的应用,题型较为基础.5、D【解析】先求出,再求出即得解.【详解】由已知,函数与函数互为反函数,则由题设,当时,,则因为为奇函数,所以.故选:D6、A【解析】先计算的坐标,再利用可得,即可求解.【详解】,因为,所以,解得:,故选:A7、B【解析】利用含有一个量词的命题的否定的定义判断.【详解】因为命题:,是全称量词命题,所以其否定是存在量词命题,即,,故选:B8、D【解析】利用二次函数单调性,列式求解作答.【详解】函数的单调递增区间是,依题意,,所以,即实数的取值范围是.故选:D9、C【解析】根据新定义把不等式转化为一般的一元二次不等式,然后由一元二次不等式恒成立得结论【详解】∵(x-a)⊙(x+a)=(x-a)(1-x-a),∴不等式(x-a)⊙(x+a)<1,即(x-a)(1-x-a)<1对任意实数x恒成立,即x2-x-a2+a+1>0对任意实数x恒成立,所以Δ=1-4(-a2+a+1)<0,解得,故选:C.10、A【解析】先利用诱导公式以及同角的三角函数关系化简,再根据特殊角的三角函数值代值计算【详解】解:由题意得,,则,故选:A【点睛】本题主要考查诱导公式和特殊角的三角函数值,考查同角的平方关系,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、8【解析】由图象平移变换和指数函数的性质可得点A坐标,然后结合反函数的性质列方程组可解.【详解】函数的图象可以由的图象向右平移2各单位长度,再向上平移3个单位长度得到,故点A坐标为,又的反函数过点,所以函数过点,所以,解得,所以.故答案为:812、16【解析】第50百分位数为数据的中位数,即得.【详解】数据的第50百分位数,即为数据的中位数为.故答案为:16.13、.【解析】利用余弦定理求出的值,结合角的取值范围得出角的值.【详解】由余弦定理得,,,故答案为.【点睛】本题考查余弦定理的应用和反三角函数,解题时要充分结合元素类型选择正弦定理和余弦定理解三角形,考查计算能力,属于中等题.14、【解析】利用基本不等式求出即可.【详解】解:若,,则,当且仅当时,取等号则的最小值为.故答案为:.【点睛】本题考查了基本不等式的应用,属于基础题.15、【解析】把点代入函数的解析式得到,然后利用基本不等式求最小值.【详解】由题意可知,又因为,所以,当且仅当即时等号成立所以的最小值是.故答案为:.16、【解析】由题意可得弦心距d=,故半径r=5,故圆C的方程为x2+(y+2)2=25,故答案为x2+(y+2)2=25三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、.【解析】根据定义域和单调性即可列出不等式求解.【详解】是定义在上增函数∴由得,解得,即故x取值范围.18、(1)(2)【解析】(1)根据对数函数的真数大于零得到不等式组,解得即可求出函数的定义域;(2)当时得到、即可得到与,则原不等式即为,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可,需注意函数的定义域;【小问1详解】解:由题意得:,解得,因为,所以,故定义域为【小问2详解】解:因为,所以,所以,,因为,所以,即从而,解得.故不等式的解集为19、(1);(2)【解析】(1)由正弦定理求解即可;(2)由余弦定理求得则面积可求【详解】(1)由正弦定理得故;(2),由余弦定理,,解得因此,【点睛】本题考查正余弦定理解三角形,考查面积公式,熟记公式准确计算是关键,是基础题20、(1);(2);(3).【解析】(1)利用两向量平行有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(2)利用两向量垂直有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(3)根据化出一个关于的方程,再利用恒等变化公式将函数转化成,从而找到最小值所取得的x的值.【详解】解:(1)∵向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π]与共线,∴,∴tanx=-,∵x∈[0,π],∴x=(2)∵⊥,∴cosx-sinx=0,∴tanx=1,∵x∈[0,π],∴x=(3)f(x)=•=cosx-,∵x∈[0,π],∴x-∈[-,],∴x-=时,f(x)取得最小值-2,∴当f(x)取得最小值时,x=【点睛】向量间的位置关系:两向量垂直,则,两向量平行,则.21、(1);;(2).【解析】(1)由三角函数的定义和为第二象限角,求得,即点,再利用三角函数的定义,即可求解;(2)利用三角函数的诱导公式和三角函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代办公事务处理任务十一拟写洽谈接待计划
- 一背肌二胸肌三膈四腹肌五盆部肌第三节躯干
- 土壤三普分析培训
- 《咨询行业研究》课件
- 团队凝聚力培训
- MBA领导力培训课程
- 《女子体育卫生》课件
- 《电工基本知识》课件
- 《光电发射器件》课件
- 妊娠糖尿病护理知识
- 2024年云南省公务员录用考试《行测》真题及答案解析
- 2024-2030年中国粉末冶金制造行业“十四五”发展动态与发展方向建议报告
- 17 难忘的泼水节(第一课时)公开课一等奖创新教学设计
- 幼儿园办园行为督导评估指标体系表
- (高清版)DB43∕T 2628-2023 埋地排水用UHMW一P∕TE方型增强排水管技术规范
- 2024-2030年中国吡蚜酮行业现状发展分析及投资潜力研究报告
- 商业建筑光伏发电系统施工方案
- 广东省深圳市2023-2024学年高一上学期语文期末考试试卷(含答案)
- 一年级数学20以内加减法口算混合练习题
- 河北省保定市定州市2024-2025学年九年级上学期期中考试化学试卷
- 【工程法规】王欣 冲刺串讲班课件 11-第5章-知识点1-合同的订立-知识点2-合同的效力
评论
0/150
提交评论