2024届云南省曲靖市宣威市民中高一数学第一学期期末复习检测试题含解析_第1页
2024届云南省曲靖市宣威市民中高一数学第一学期期末复习检测试题含解析_第2页
2024届云南省曲靖市宣威市民中高一数学第一学期期末复习检测试题含解析_第3页
2024届云南省曲靖市宣威市民中高一数学第一学期期末复习检测试题含解析_第4页
2024届云南省曲靖市宣威市民中高一数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省曲靖市宣威市民中高一数学第一学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,①②③④中不属于函数,,的一个是()A.① B.②C.③ D.④2.设函数的部分图象如图所示,若,且,则()A. B.C. D.3.将函数的图象向右平移个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),则所得到的图象的函数解析式为A. B.C. D.4.函数的部分图象如图所示,则,的值分别是()A.2, B.2,C.4, D.4,5.下列函数中,以为最小正周期且在区间上为增函数的函数是()A. B.C. D.6.已知函数,若不等式对任意实数x恒成立,则a的取值范围为()A. B.C. D.7.已知,若,则x的取值范围为()A. B.C. D.8.命题“”的否定为A. B.C. D.9.为了得到的图象,可以将的图象()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位10.已知第二象限角的终边上有异于原点的两点,,且,若,则的最小值为()A. B.3C. D.4二、填空题:本大题共6小题,每小题5分,共30分。11.函数的部分图像如图所示,轴,则_________,_________12.已知是定义在R上的奇函数,当时,,则在R上的表达式是________13.已知函数,若方程有四个不同的实根,满足,则值为__________.14.设是R上的奇函数,且当时,,则__________15.函数的定义域是______________16.已知函数f(x)=x2,若存在t∈R,对任意x∈[1,m](m>1,m∈N),都有f(x+t)≤2x,则m的最大值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.18.某校手工爱好者社团出售自制的工艺品,每件的售价在20元到40元之间时,其销售量(件)与售价(元/件)之间满足一次函数关系,部分对应数据如下表所示.(元/件)20212223……3940(件)440420400380……6040(1)求此一次函数的解析式;(2)若每件工艺品的成本是20元,在不考虑其他因素的情况下,每件工艺品的售价是多少时,利润最大?最大利润是多少?19.已知函数满足(1)求的解析式,并求在上的值域;(2)若对,且,都有成立,求实数k的取值范围20.已知全集,,(Ⅰ)求;(Ⅱ)求21.已知函数.(1)求的值及的单调递增区间;(2)求在区间上的最大值和最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据对数函数图象特征及与图象的关于轴对称即可求解.【详解】解:由对数函数图象特征及与的图象关于轴对称,可确定②不已知函数图象.故选:B.2、C【解析】根据图像求出,由得到,代入即可求解.【详解】根据函数的部分图象,可得:A=1;因为,,结合五点法作图可得,,如果,且,结合,可得,,,故选:C3、A【解析】由题意利用函数的图象变换法则,即可得出结论【详解】将函数的图象向右平移个的单位长度,可得的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为,故选【点睛】本题主要考查函数的图象变换法则,注意对的影响4、B【解析】根据图象的两个点、的横坐标,得到四分之三个周期的值,得到周期的值,做出的值,把图象所过的一个点的坐标代入方程做出初相,写出解析式,代入数值得到结果【详解】解:由图象可得:,∴,∴,又由函数的图象经过,∴,∴,即,又由,则故选:B【点睛】本题考查由部分图象确定函数的解析式,属于基础题关键点点睛:本题解题的关键是利用代入点的坐标求出初相.5、B【解析】对四个选项依次判断最小正周期及单调区间,即可判断.【详解】对于A,,最小正周期为,单调递增区间为,即,在内不单调,所以A错误;对于B,的最小正周期为,单调递增区间为,即,在内单调递增,所以B正确;对于C,的最小正周期为,所以C错误;对于D,的最小正周期为,所以D错误.综上可知,正确的为B故选:B【点睛】本题考查了函数的最小正周期及单调区间的判断,根据函数性质判断即可,属于基础题.6、C【解析】先分析出的奇偶性,再得出的单调性,由单调性结合奇偶性解不等式得到,再利用均值不等式可得答案.【详解】的定义域满足,由,所以在上恒成立.所以的定义域为则所以,即为奇函数.设,由上可知为奇函数.当时,,均为增函数,则在上为增函数.所以在上为增函数.又为奇函数,则在上为增函数,且所以在上为增函数.所以在上为增函数.由,即所以对任意实数x恒成立即,由当且仅当,即时得到等号.所以故选:C7、C【解析】首先判断函数的单调性和定义域,再解抽象不等式.【详解】函数的定义域需满足,解得:,并且在区间上,函数单调递增,且,所以,即,解得:或.故选:C【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.8、D【解析】根据命题的否定的定义写出结论,注意存在量词与全称量词的互换【详解】命题“”的否定为“”故选D【点睛】本题考查命题的否定,解题时一定注意存在量词与全称量词的互换9、A【解析】根据左加右减原则,只需将函数向左平移个单位可得到.【详解】,即向左平移个单位可得到.故选:A【点睛】本题考查正弦型函数的图像与性质,三角函数诱导公式,属于基础题.10、B【解析】根据,得到,从而得到,进而得到,再利用“1”的代换以及基本不等式求解.【详解】解:因为,所以,又第二象限角的终边上有异于原点的两点,,所以,则,因为,所以,所以,当且仅当,即时,等号成立,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、①.2②.##【解析】根据最低点的坐标和函数的零点,可以求出周期,进而可以求出的值,再把最低点的坐标代入函数解析式中,最后求出的值.【详解】通过函数的图象可知,点B、C的中点为,与它隔一个零点是,设函数的最小正周期为,则,而,把代入函数解析式中,得.故答案为:;12、【解析】根据奇函数定义求出时的解析式,再写出上的解析式即可【详解】时,,,所以故答案为:【点睛】本题考查函数的奇偶性,掌握奇函数的定义是解题关键13、11【解析】画出函数图像,利用对数运算及二次函数的对称性可得答案.【详解】函数的图像如图:若方程有四个不同的实根,满足,则必有,得,.故答案为:11.14、【解析】由函数的性质得,代入当时的解析式求出的值,即可得解.【详解】当时,,,是上的奇函数,故答案为:15、【解析】由题意可得,从而可得答案.【详解】函数的定义域满足即,所以函数的定义域为故答案为:16、5【解析】设g(x)=f(x+t)-2x=x2+(2t-2)x+t2≤0.从而得到g(1)≤0且g(m)≤0,求得t的范围,讨论t的最值,代入m的不等式求得m的范围,结合条件可得m的最大值【详解】函数f(x)=x2,那么f(x+t)=x2+2tx+t2,对任意实数x∈[l,m],都有f(x+t)≤2x成立,即有x2+(2t-2)x+t2≤0令g(x)=x2+(2t-2)x+t2,从而得到g(1)≤0,且g(m)≤0,由g(1)≤0可得,由g(m)≤0,即m2+(2t-2)m+t2≤0当时,;当时,综上可得,由m为正整数,可得m的最大值为5故答案为5【点睛】本题考查不等式恒成立问题解法,注意运用二次函数的性质,考查运算求解能力,是中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、解:(1)y(2)ymax=1225,ymin=600【解析】解:(Ⅰ)=(Ⅱ)当0≤t<10时,y的取值范围是[1200,1225],在t=5时,y取得最大值为1225;当10≤t≤20时,y的取值范围是[600,1200],在t=20时,y取得最小值为600(答)总之,第5天,日销售额y取得最大为1225元;第20天,日销售额y取得最小为600元18、(1)(2)每件工艺品的售价为31元时,利润最大,最大利润为2420元【解析】(1)设,任取两级数据代入求得参数值得解析式;(2)由(1)中关系式得出利润与的关系,由二次函数的性质得最大值【小问1详解】设,不妨选择两组数据,代入,可得解得∴一次函数的解析式为【小问2详解】设利润为元,由题意可得,∴当时,,∴每件工艺品的售价为31元时,利润最大,最大利润为2420元19、(1),(2)【解析】(1)由条件可得,然后可解出,然后利用对勾函数的知识可得答案;(2)设,条件中的不等式可变形为,即可得在区间(2,4)递增,然后分、、三种情况讨论求解即可.【小问1详解】因为①,所以②,联立①②解得.当时为增函数,时为减函数,因为所以【小问2详解】对,,,都有,不妨设,则由恒成立,也即可得函数在区间(2,4)递增;当,即时,满足题意;当,即时,为两个在上单调递增函数的和,则可得在单调递增,从而满足在(2,4)递增,符合题意;当,即时,,其在递减,在递增,若使在(2,4)递增,则只需;综上可得:20、(Ⅰ)(Ⅱ)【解析】两集合A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论