安徽省示范中学培优联盟2023-2024学年数学高一上期末统考试题含解析_第1页
安徽省示范中学培优联盟2023-2024学年数学高一上期末统考试题含解析_第2页
安徽省示范中学培优联盟2023-2024学年数学高一上期末统考试题含解析_第3页
安徽省示范中学培优联盟2023-2024学年数学高一上期末统考试题含解析_第4页
安徽省示范中学培优联盟2023-2024学年数学高一上期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省示范中学培优联盟2023-2024学年数学高一上期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知定义域为的单调递增函数满足:,有,则方程的解的个数为()A.3 B.2C.1 D.02.计算(16A.-1 B.1C.-3 D.33.函数的最小正周期是A. B.C. D.4.已知函数,则的值是()A. B.C. D.5.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是A. B.C. D.6.已知点,,,且满足,若点在轴上,则等于A. B.C. D.7.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割,如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是两底角为的等腰三角形(另一种是两底角为的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC中,.根据这些信息,可得sin54°=()A. B.C. D.8.已知幂函数过点则A.,且在上单调递减B.,且在单调递增C.且在上单调递减D.,且在上单调递增9.已知函数的部分图象如图所示,则将的图象向左平移个单位后,得到的图象对应的函数解析式为()A. B.C. D.10.如图,把边长为4的正方形ABCD沿对角线AC折起,当直线BD和平面ABC所成的角为时,三棱锥的体积为()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为___________小时.12.记函数的值域为,在区间上随机取一个数,则的概率等于__________13.棱长为2个单位长度的正方体中,以为坐标原点,以,,分别为,,轴,则与的交点的坐标为__________14.已知函数是偶函数,则实数的值是__________15.用二分法求函数f(x)=3x-x-4的一个零点,其参考数据如下:f(1.6000)≈0.200f(1.5875)≈0.133f(1.5750)≈0.067f(1.5625)≈0.003f(1.5562)≈-0.029f(1.5500)≈-0.060据此数据,可得方程3x-x-4=0的一个近似解为________(精确到0.01)三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数是上的偶函数,且当时,.(1)求的值;(2)求函数的表达式,并直接写出其单调区间(不需要证明);(3)若,求实数的取值范围.17.设全集,已知函数的定义域为集合A,函数的值域为集合B.(1)求;(2)若且,求实数a的取值范围.18.已知定义在R上的函数满足:①对任意实数x,y,都有;②对任意(1)求;(2)判断并证明函数的奇偶性;(3)若,直接写出的所有零点(不需要证明)19.已知二次函数,关于x的不等式<0的解集为(1)求实数m、n的值;(2)当时,解关于x的不等式;(3)当是否存在实数a,使得对任意时,关于x的函数有最小值-5.若存在,求实数a值;若不存在,请说明理由20.已知,函数.(1)当时,证明是奇函数;(2)当时,求函数的单调区间;(3)当时,求函数在上的最小值.21.若函数自变量的取值区间为时,函数值的取值区间恰为,就称区间为的一个“罗尔区间”.已知函数是定义在上的奇函数,当时,.(1)求的解析式;(2)求函数在内的“罗尔区间”;(3)若以函数在定义域所有“罗尔区间”上的图像作为函数的图像,是否存在实数,使集合恰含有2个元素.若存在,求出实数的取值集合;若不存在,说明理由.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】根据给定条件求出函数的解析式,再将问题转化成求两个函数图象公共点个数作答.【详解】因定义域为的单调递增函数满足:,有,则存在唯一正实数使得,且,即,于是得,而函数在上单调递增,且当时,,因此,,方程,于是得方程的解的个数是函数与的图象公共点个数,在同一坐标系内作出函数与的图象如图,观察图象知,函数与的图象有3个公共点,所以方程解的个数为3.故选:A【点睛】思路点睛:图象法判断方程的根的个数,常常将方程变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.2、B【解析】原式=故选B3、D【解析】分析:直接利用周期公式求解即可.详解:∵,,∴.故选D点睛:本题主要考查三角函数的图象与性质,属于简单题.由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.4、D【解析】根据题意,直接计算即可得答案.【详解】解:由题知,,.故选:D5、C【解析】将函数y=sin(x-)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y=sin(x-),再向左平移个单位得到的解析式为y=sin((x+)-)=y=sin(x-),故选C6、C【解析】由题意得,∴设点的坐标为,∵,∴,∴,解得故选:C7、C【解析】先求出,再借助倍角公式求出,通过诱导公式求出sin54°.【详解】正五边形的一个内角为,则,,,所以故选:C.8、A【解析】由幂函数过点,求出,从而,在上单调递减【详解】幂函数过点,,解得,,在上单调递减故选A.【点睛】本题考查幂函数解析式的求法,并判断其单调性,考查幂函数的性质等基础知识,考查运算求解能力,是基础题.9、C【解析】根据给定图象求出函数的解析式,再平移,代入计算作答.【详解】观察图象得,令函数周期为,有,解得,则,而当时,,则有,又,则,因此,,将的图象向左平移个单位得:,所以将的图象向左平移个单位后,得到的图象对应的函数解析式为.故选:C10、C【解析】取的中点为,连接,过作的垂线,垂足为,可以证明平面、平面,求出的面积后利用公式求出三棱锥的体积.【详解】取的中点为,连接,过作的垂线,垂足为.因为为等腰直角三角形,故,同理,而,故平面,而平面,故平面平面,因为平面平面,平面,故平面,故为直线BD和平面ABC所成的角,所以.在等腰直角形中,因为,,故,同理,故为等边三角形,故.故.故选:C.【点睛】思路点睛:线面角的构造,往往需要根据面面垂直来构建线面垂直,而后者来自线线垂直,注意对称的图形蕴含着垂直关系,另外三棱锥体积的计算,需选择合适的顶点和底面.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据图象先求出函数的解析式,然后由已知构造不等式0.25,解不等式可得每毫升血液中含药量不少于0.25微克的起始时刻和结束时刻,他们之间的差值即为服药一次治疗疾病有效的时间【详解】解:当时,函数图象是一个线段,由于过原点与点,故其解析式为,当时,函数的解析式为,因为在曲线上,所以,解得,所以函数的解析式为,综上,,由题意有,解得,所以,所以服药一次治疗疾病有效的时间为个小时,故答案为:.12、【解析】因为;所以的概率等于点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率13、【解析】设即的坐标为14、1【解析】函数是偶函数,,即,解得,故答案为.【方法点睛】本题主要考查函数的奇偶性,属于中档题.已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性15、56【解析】注意到f(1.5562)=-0.029和f(1.5625)=0.003,显然f(1.5562)f(1.5625)<0,故区间的端点四舍五入可得1.56.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)答案见解析(3)【解析】(1)根据偶函数的性质直接计算;(2)当时,则,根据偶函数的性质即可求出;(3)由题可得,根据单调性可得,即可解出.【小问1详解】因为是上的偶函数,所以.【小问2详解】当时,则,则,故当时,,故,故的单调递增区间为,单调递减区间为.【小问3详解】若,即,即因为在单调递减,所以,故或,解得:或,即.17、(1){1};(2)【解析】(1)求出函数的定义域为集合,函数的值域为集合,即可求得答案;(2)根据集合的包含关系,列出相应的不等式,求得答案.【详解】(1)由题意知,,则,∴(2)若则;若则,综上,.18、(1)(2)为偶函数,证明见解析(3)【解析】(1)令,化简可求出,(2)令,则,化简后结合函数奇偶性的定义判断即可,(3)利用赋值求解即可【小问1详解】令,则,,得或,因对任意,所以【小问2详解】为偶函数证明:令,则,得,所以为偶函数【小问3详解】令,则,因为,所以,当时,,当时,,当时,,当时,,……,所以即当时,,所以函数的零点为19、(1);(2)答案见解析;(3)存在,.【解析】(1)利用给定条件结合一元二次不等式与一元二次方程的关系,借助韦达定理计算作答.(2)分类讨论求解一元二次不等式即可作答.(3)换元,借助二次函数在闭区间上最值,计算判断作答.【小问1详解】依题意,不等式的解集是,因此,是关于x的一元二次方程的二根,且,于得,解得,所以实数m、n的值是:.【小问2详解】当时,由(1)知:,当时,,解得:或,当时,解得,当时,不等式化:,解得:,所以,当时,原不等式的解集是,当时,原不等式的解集是,当时,原不等式的解集是.【小问3详解】假设存在实数满足条件,由(1)知,,,因,则设,函数化为:,显然,于是得在上单调递减,当时,,由解得:或(舍去),又,所以存在实数满足条件,.【点睛】易错点睛:解含参数的一元二次不等式,首先注意二次项系数是否含有参数,如果有,必须按二次项系为正、零、负三类讨论求解.20、(1)见解析(2)增区间为,,减区间为(3)当时,;当时,【解析】(1)时,,定义域为,关于原点对称,而,故是奇函数.(2)时,,不同范围上的函数解析式都是二次形式且有相同的对称轴,因,故函数的增区间为,,减区间为.(3)根据(2)的单调性可知,比较的大小即可得到.解析:(1)若,则,其定义域是一切实数.且有,所以是奇函数.(2)函数,因为,则函数在区间递减,在区间递增,函数在区间递增.∴综上可知,函数的增区间为,,减区间为.(3)由得.又函数在递增,在递减,且,.若,即时,;若,即时,.∴综上,当时,;当时,.点睛:带有绝对值符号的函数,往往可以通过讨论代数式的正负去掉绝对值符号,从而把原函数转化为分段函数,每一段上的函数都是熟悉的函数,讨论它们的单调性就可以得到原函数的单调性.21、(1);(2);(3)存在,.【解析】(1)根据为上的奇函数,得到,再由时,,设时,则代入求解.(2)设,易知在上单调递减,则,则,是方程的两个不等正根求解(3)设为的一个“罗尔区间”,且,同号,若,由(2)可得,若,同理可求,得到,再根据集合恰含有2个元素,转化为与的图象有两个交点,即方程在内恰有一个实数根,方程,在内恰有一个实数根求解..【详解】(1)因为为上的奇函数,∴,又当时,,所以当时,,所以,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论